-
Notifications
You must be signed in to change notification settings - Fork 4.2k
operators
- AbsVal
- ArgMax
- BatchNorm
- Bias
- BinaryOp
- BNLL
- Cast
- CELU
- Clip
- Concat
- Convolution
- Convolution1D
- Convolution3D
- ConvolutionDepthWise
- ConvolutionDepthWise1D
- ConvolutionDepthWise3D
- CopyTo
- Crop
- CumulativeSum
- Deconvolution
- Deconvolution1D
- Deconvolution3D
- DeconvolutionDepthWise
- DeconvolutionDepthWise1D
- DeconvolutionDepthWise3D
- DeformableConv2D
- Dequantize
- Diag
- Dropout
- Eltwise
- ELU
- Embed
- Exp
- Flatten
- Fold
- GELU
- GLU
- Gemm
- GridSample
- GroupNorm
- GRU
- HardSigmoid
- HardSwish
- InnerProduct
- Input
- InstanceNorm
- Interp
- InverseSpectrogram
- LayerNorm
- Log
- LRN
- LSTM
- MemoryData
- Mish
- MultiHeadAttention
- MVN
- Noop
- Normalize
- Packing
- Padding
- Permute
- PixelShuffle
- Pooling
- Pooling1D
- Pooling3D
- Power
- PReLU
- Quantize
- Reduction
- ReLU
- Reorg
- Requantize
- Reshape
- RMSNorm
- RNN
- Scale
- SELU
- Shrink
- ShuffleChannel
- Sigmoid
- Slice
- Softmax
- Softplus
- Spectrogram
- Split
- Swish
- TanH
- Threshold
- Tile
- UnaryOp
- Unfold
y = abs(x)
- one_blob_only
- support_inplace
y = argmax(x, out_max_val, topk)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | out_max_val | int | 0 | |
1 | topk | int | 1 |
y = (x - mean) / sqrt(var + eps) * slope + bias
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | channels | int | 0 | |
1 | eps | float | 0.f |
weight | type | shape |
---|---|---|
slope_data | float | [channels] |
mean_data | float | [channels] |
var_data | float | [channels] |
bias_data | float | [channels] |
y = x + bias
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | bias_data_size | int | 0 |
weight | type | shape |
---|---|---|
bias_data | float | [channels] |
This operation is used for binary computation, and the calculation rule depends on the broadcasting rule.
C = binaryop(A, B)
if with_scalar = 1:
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | op_type | int | 0 | Operation type as follows |
1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar |
2 | b | float | 0.f | When B is a scalar, B = b |
Operation type:
- 0 = ADD
- 1 = SUB
- 2 = MUL
- 3 = DIV
- 4 = MAX
- 5 = MIN
- 6 = POW
- 7 = RSUB
- 8 = RDIV
- 9 = RPOW
- 10 = ATAN2
- 11 = RATAN2
y = log(1 + e^(-x)) , x > 0
y = log(1 + e^x), x < 0
- one_blob_only
- support_inplace
y = cast(x)
- one_blob_only
- support_packing
param id | name | type | default | description |
---|---|---|---|---|
0 | type_from | int | 0 | |
1 | type_to | int | 0 |
Element type:
- 0 = auto
- 1 = float32
- 2 = float16
- 3 = int8
- 4 = bfloat16
if x < 0 y = (exp(x / alpha) - 1.f) * alpha
else y = x
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 1.f |
y = clamp(x, min, max)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | min | float | -FLT_MAX | |
1 | max | float | FLT_MAX |
y = concat(x0, x1, x2, ...) by axis
param id | name | type | default | description |
---|---|---|---|---|
0 | axis | int | 0 |
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
8 | int8_scale_term | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
18 | pad_value | float | 0.f | |
19 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] |
bias_data | float | [num_output] |
weight_data_int8_scales | float | [num_output] |
bottom_blob_int8_scales | float | [1] |
top_blob_int8_scales | float | [1] |
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
15 | pad_right | int | pad_left | |
18 | pad_value | float | 0.f | |
19 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] |
bias_data | float | [num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
17 | pad_behind | int | pad_front | |
18 | pad_value | float | 0.f | |
21 | kernel_d | int | kernel_w | |
22 | dilation_d | int | dilation_w | |
23 | stride_d | int | stride_w | |
24 | pad_front | int | pad_left |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data | float | [num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
8 | int8_scale_term | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
18 | pad_value | float | 0.f | |
19 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
weight_data_int8_scales | float | [group] |
bottom_blob_int8_scales | float | [1] |
top_blob_int8_scales | float | [1] |
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
15 | pad_right | int | pad_left | |
18 | pad_value | float | 0.f | |
19 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
17 | pad_behind | int | pad_front | |
18 | pad_value | float | 0.f | |
21 | kernel_d | int | kernel_w | |
22 | dilation_d | int | dilation_w | |
23 | stride_d | int | stride_w | |
24 | pad_front | int | pad_left |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
self[offset] = src
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | woffset | int | 0 | |
1 | hoffset | int | 0 | |
13 | doffset | int | 0 | |
2 | coffset | int | 0 | |
9 | starts | array | [ ] | |
11 | axes | array | [ ] |
y = crop(x)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | woffset | int | 0 | |
1 | hoffset | int | 0 | |
13 | doffset | int | 0 | |
2 | coffset | int | 0 | |
3 | outw | int | 0 | |
4 | outh | int | 0 | |
14 | outd | int | 0 | |
5 | outc | int | 0 | |
6 | woffset2 | int | 0 | |
7 | hoffset2 | int | 0 | |
15 | doffset2 | int | 0 | |
8 | coffset2 | int | 0 | |
9 | starts | array | [ ] | |
10 | ends | array | [ ] | |
11 | axes | array | [ ] |
If axis < 0, we use axis = x.dims + axis
It implements https://pytorch.org/docs/stable/generated/torch.cumsum.html
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | axis | int | 0 |
x2 = deconv(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
18 | output_pad_right | int | 0 | |
19 | output_pad_bottom | int | output_pad_right | |
20 | output_w | int | 0 | |
21 | output_h | int | output_w | |
28 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] |
bias_data | float | [num_output] |
x2 = deconv1d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
15 | pad_right | int | pad_left | |
18 | output_pad_right | int | 0 | |
20 | output_w | int | 0 | |
28 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, num_input, num_output] |
bias_data | float | [num_output] |
x2 = deconv3d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
17 | pad_behind | int | pad_front | |
18 | output_pad_right | int | 0 | |
19 | output_pad_bottom | int | output_pad_right | |
20 | output_pad_behind | int | output_pad_right | |
21 | kernel_d | int | kernel_w | |
22 | dilation_d | int | dilation_w | |
23 | stride_d | int | stride_w | |
24 | pad_front | int | pad_left | |
25 | output_w | int | 0 | |
26 | output_h | int | output_w | |
27 | output_d | int | output_w |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
bias_data | float | [num_output] |
x2 = deconv(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
18 | output_pad_right | int | 0 | |
19 | output_pad_bottom | int | output_pad_right | |
20 | output_w | int | 0 | |
21 | output_h | int | output_w | |
28 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
15 | pad_right | int | pad_left | |
18 | output_pad_right | int | 0 | |
20 | output_w | int | 0 | |
28 | dynamic_weight | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
7 | group | int | 1 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
17 | pad_behind | int | pad_front | |
18 | output_pad_right | int | 0 | |
19 | output_pad_bottom | int | output_pad_right | |
20 | output_pad_behind | int | output_pad_right | |
21 | kernel_d | int | kernel_w | |
22 | dilation_d | int | dilation_w | |
23 | stride_d | int | stride_w | |
24 | pad_front | int | pad_left | |
25 | output_w | int | 0 | |
26 | output_h | int | output_w | |
27 | output_d | int | output_w |
weight | type | shape |
---|---|---|
weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
bias_data | float | [num_output] |
x2 = deformableconv2d(x, offset, mask, weight, kernel, stride, dilation) + bias
y = activation(x2, act_type, act_params)
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
5 | bias_term | int | 0 | |
6 | weight_data_size | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] |
bias_data | float | [num_output] |
y = x * scale + bias
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | scale_data_size | int | 1 | |
1 | bias_data_size | int | 0 |
weight | type | shape |
---|---|---|
scale_data | float | [scale_data_size] |
bias_data | float | [bias_data_size] |
y = diag(x, diagonal)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | diagonal | int | 0 |
y = x * scale
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | scale | float | 1.f |
y = elementwise_op(x0, x1, ...)
param id | name | type | default | description |
---|---|---|---|---|
0 | op_type | int | 0 | |
1 | coeffs | array | [ ] |
Operation type:
- 0 = PROD
- 1 = SUM
- 2 = MAX
if x < 0 y = (exp(x) - 1) * alpha
else y = x
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 0.1f |
y = embedding(x)
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | input_dim | int | 0 | |
2 | bias_term | int | 0 | |
3 | weight_data_size | int | 0 | |
18 | int8_scale_term | int | 0 |
weight | type | shape |
---|---|---|
weight_data | float | [weight_data_size] |
bias_term | float | [num_output] |
weight_data_int8_scales | float | [1] |
if base == -1 y = exp(shift + x * scale)
else y = pow(base, (shift + x * scale))
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | base | float | -1.f | |
1 | scale | float | 1.f | |
2 | shift | float | 0.f |
Reshape blob to 1 dimension
- one_blob_only
y = fold(x)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top | |
20 | output_w | int | 0 | |
21 | output_h | int | output_w |
if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x)));
else y = 0.5 * x * erfc(-0.70710678 * x)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | fast_gelu | int | 0 | use approximation |
If axis < 0, we use axis = x.dims + axis
GLU(a,b)=a⊗σ(b)
where a is the first half of the input matrix and b is the second half.
axis specifies the dimension to split the input
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | axis | int | 0 |
a = transA ? transpose(x0) : x0
b = transb ? transpose(x1) : x1
c = x2
y = (gemm(a, b) + c * beta) * alpha
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 1.f | |
1 | beta | float | 1.f | |
2 | transA | int | 0 | |
3 | transb | int | 0 | |
4 | constantA | int | 0 | |
5 | constantB | int | 0 | |
6 | constantC | int | 0 | |
7 | constantM | int | 0 | |
8 | constantN | int | 0 | |
9 | constantK | int | 0 | |
10 | constant_broadcast_type_C | int | 0 | |
11 | output_N1M | int | 0 | |
12 | output_elempack | int | 0 | |
13 | output_elemtype | int | 0 | |
14 | output_transpose | int | 0 | |
18 | int8_scale_term | int | 0 | |
20 | constant_TILE_M | int | 0 | |
21 | constant_TILE_N | int | 0 | |
22 | constant_TILE_K | int | 0 |
weight | type | shape |
---|---|---|
A_data | float/fp16/int8 | [M, K] or [K, M] |
B_data | float/fp16/int8 | [N, K] or [K, N] |
C_data | float | [1], [M] or [N] or [1, M] or [N,1] or [N, M] |
A_data_int8_scales | float | [M] |
B_data_int8_scales | float | [1] |
Given an input and a flow-field grid, computes the output using input values and pixel locations from grid.
For each output location output[:, h2, w2], the size-2 vector grid[h2, w2, 2] specifies input pixel[:, h1, w1] locations x and y,
which are used to interpolate the output value output[:, h2, w2]
This function is often used in conjunction with affine_grid() to build Spatial Transformer Networks .
param id | name | type | default | description |
---|---|---|---|---|
0 | sample_type | int | 1 | |
1 | padding_mode | int | 1 | |
2 | align_corner | int | 0 | |
3 | permute_fusion | int | 0 | fuse with permute |
Sample type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
Padding mode:
- 1 = zeros
- 2 = border
- 3 = reflection
split x along channel axis into group x0, x1 ...
l2 normalize for each group x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | group | int | 1 | |
1 | channels | int | 0 | |
2 | eps | float | 0.001f | x = x / sqrt(var + eps) |
3 | affine | int | 1 |
weight | type | shape |
---|---|---|
gamma_data | float | [channels] |
beta_data | float | [channels] |
Apply a single-layer GRU to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = gru(x)
y0, hidden y1 = gru(x0, hidden x1)
- one_blob_only if bidirectional
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | hidden size of output |
1 | weight_data_size | int | 0 | total size of weight matrix |
2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
weight | type | shape |
---|---|---|
weight_xc_data | float/fp16/int8 | [input_size, num_output * 3, num_directions] |
bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] |
weight_hc_data | float/fp16/int8 | [num_output, num_output * 3, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
y = clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 0.2f | |
1 | beta | float | 0.5f |
y = x * clamp(x * alpha + beta, 0, 1)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 0.2f | |
1 | beta | float | 0.5f |
x2 = innerproduct(x, weight) + bias
y = activation(x2, act_type, act_params)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | bias_term | int | 0 | |
2 | weight_data_size | int | 0 | |
8 | int8_scale_term | int | 0 | |
9 | activation_type | int | 0 | |
10 | activation_params | array | [ ] |
weight | type | shape |
---|---|---|
weight_data | float/fp16/int8 | [num_input, num_output] |
bias_data | float | [num_output] |
weight_data_int8_scales | float | [num_output] |
bottom_blob_int8_scales | float | [1] |
y = input
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | w | int | 0 | |
1 | h | int | 0 | |
11 | d | int | 0 | |
2 | c | int | 0 |
split x along channel axis into instance x0, x1 ...
l2 normalize for each channel instance x0, x1 ...
y = x * gamma + beta
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | channels | int | 0 | |
1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
2 | affine | int | 1 |
weight | type | shape |
---|---|---|
gamma_data | float | [channels] |
beta_data | float | [channels] |
if dynamic_target_size == 0 y = resize(x) by fixed size or scale
else y = resize(x0, size(x1))
- one_blob_only if dynamic_target_size == 0
param id | name | type | default | description |
---|---|---|---|---|
0 | resize_type | int | 0 | |
1 | height_scale | float | 1.f | |
2 | width_scale | float | 1.f | |
3 | output_height | int | 0 | |
4 | output_width | int | 0 | |
5 | dynamic_target_size | int | 0 | |
6 | align_corner | int | 0 |
Resize type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
x1 = x as complex
x1 = x1 * sqrt(norm) if normalized
y = istft(x1)
y1 = unpad(y) if center
if returns == 0 return y1 as complex
if returns == 1 return y1 real
if returns == 2 return y1 imag
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | n_fft | int | 0 | |
1 | returns | int | 1 | |
2 | hoplen | int | n_fft / 4 | |
3 | winlen | int | n_fft | |
4 | window_type | int | 0 | 0=ones 1=hann 2=hamming |
5 | center | int | 1 | |
7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy |
split x along outmost axis into part x0, x1 ...
l2 normalize for each part x0, x1 ...
y = x * gamma + beta by elementwise
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | affine_size | int | 0 | |
1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
2 | affine | int | 1 |
weight | type | shape |
---|---|---|
gamma_data | float | [affine_size] |
beta_data | float | [affine_size] |
if base == -1 y = log(shift + x * scale)
else y = log(shift + x * scale) / log(base)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | base | float | -1.f | |
1 | scale | float | 1.f | |
2 | shift | float | 0.f |
if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size
if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size
y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | region_type | int | 0 | |
1 | local_size | int | 5 | |
2 | alpha | float | 1.f | |
3 | beta | float | 0.75f | |
4 | bias | float | 1.f |
Region type:
- 0 = ACROSS_CHANNELS
- 1 = WITHIN_CHANNEL
Apply a single-layer LSTM to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = lstm(x)
y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2)
- one_blob_only if bidirectional
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | output size of output |
1 | weight_data_size | int | 0 | total size of IFOG weight matrix |
2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
3 | hidden_size | int | num_output | hidden size |
weight | type | shape |
---|---|---|
weight_xc_data | float/fp16/int8 | [input_size, hidden_size * 4, num_directions] |
bias_c_data | float/fp16/int8 | [hidden_size, 4, num_directions] |
weight_hc_data | float/fp16/int8 | [num_output, hidden_size * 4, num_directions] |
weight_hr_data | float/fp16/int8 | [hidden_size, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
y = data
param id | name | type | default | description |
---|---|---|---|---|
0 | w | int | 0 | |
1 | h | int | 0 | |
11 | d | int | 0 | |
2 | c | int | 0 | |
21 | load_type | int | 1 | 1=fp32 |
weight | type | shape |
---|---|---|
data | float | [w, h, d, c] |
y = x * tanh(log(exp(x) + 1))
- one_blob_only
- support_inplace
split q k v into num_head part q0, k0, v0, q1, k1, v1 ...
for each num_head part
xq = affine(q) / (embed_dim / num_head)
xk = affine(k)
xv = affine(v)
xqk = xq * xk
xqk = xqk + attn_mask if attn_mask exists
softmax_inplace(xqk)
xqkv = xqk * xv
merge xqkv to out
y = affine(out)
param id | name | type | default | description |
---|---|---|---|---|
0 | embed_dim | int | 0 | |
1 | num_heads | int | 1 | |
2 | weight_data_size | int | 0 | qdim = weight_data_size / embed_dim |
3 | kdim | int | embed_dim | |
4 | vdim | int | embed_dim | |
5 | attn_mask | int | 0 | |
6 | scale | float | 1.f / sqrt(embed_dim / num_heads) | |
18 | int8_scale_term | int | 0 |
weight | type | shape |
---|---|---|
q_weight_data | float/fp16/int8 | [embed_dim * qdim] |
q_bias_data | float | [embed_dim] |
k_weight_data | float/fp16/int8 | [embed_dim * kdim] |
k_bias_data | float | [embed_dim] |
v_weight_data | float/fp16/int8 | [embed_dim * vdim] |
v_bias_data | float | [embed_dim] |
out_weight_data | float/fp16/int8 | [qdim * embed_dim] |
out_bias_data | float | [qdim] |
q_weight_data_int8_scales | float | [embed_dim] |
k_weight_data_int8_scales | float | [embed_dim] |
v_weight_data_int8_scales | float | [embed_dim] |
out_weight_data_int8_scales | float | [1] |
if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob
if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel
if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob
if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | normalize_variance | int | 0 | |
1 | across_channels | int | 0 | |
2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) |
y = x
if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob
if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel
if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position
y = x2 * scale
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | across_spatial | int | 0 | |
1 | channel_shared | int | 0 | |
2 | eps | float | 0.0001f | see eps mode |
3 | scale_data_size | int | 0 | |
4 | across_channel | int | 0 | |
9 | eps_mode | int | 0 |
weight | type | shape |
---|---|---|
scale_data | float | [scale_data_size] |
Eps Mode:
- 0 = caffe/mxnet x = x / sqrt(var + eps)
- 1 = pytorch x = x / max(sqrt(var), eps)
- 2 = tensorflow x = x / sqrt(max(var, eps))
y = wrap_packing(x)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | out_elempack | int | 1 | |
1 | use_padding | int | 0 | |
2 | cast_type_from | int | 0 | |
3 | cast_type_to | int | 0 | |
4 | storage_type_from | int | 0 | |
5 | storage_type_to | int | 0 |
y = pad(x, pads)
param id | name | type | default | description |
---|---|---|---|---|
0 | top | int | 0 | |
1 | bottom | int | 0 | |
2 | left | int | 0 | |
3 | right | int | 0 | |
4 | type | int | 0 | |
5 | value | float | 0 | |
6 | per_channel_pad_data_size | int | 0 | |
7 | front | int | stride_w | |
8 | behind | int | pad_left |
weight | type | shape |
---|---|---|
per_channel_pad_data | float | [per_channel_pad_data_size] |
Padding type:
- 0 = CONSTANT
- 1 = REPLICATE
- 2 = REFLECT
y = reorder(x)
param id | name | type | default | description |
---|---|---|---|---|
0 | order_type | int | 0 |
Order Type:
- 0 = WH WHC WHDC
- 1 = HW HWC HWDC
- 2 = WCH WDHC
- 3 = CWH DWHC
- 4 = HCW HDWC
- 5 = CHW DHWC
- 6 = WHCD
- 7 = HWCD
- 8 = WCHD
- 9 = CWHD
- 10 = HCWD
- 11 = CHWD
- 12 = WDCH
- 13 = DWCH
- 14 = WCDH
- 15 = CWDH
- 16 = DCWH
- 17 = CDWH
- 18 = HDCW
- 19 = DHCW
- 20 = HCDW
- 21 = CHDW
- 22 = DCHW
- 23 = CDHW
if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc
if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | upscale_factor | int | 1 | |
1 | mode | int | 0 |
x2 = pad(x, pads)
x3 = pooling(x2, kernel, stride)
param id | name | type | default | description |
---|---|---|---|---|
0 | pooling_type | int | 0 | |
1 | kernel_w | int | 0 | |
2 | stride_w | int | 1 | |
3 | pad_left | int | 0 | |
4 | global_pooling | int | 0 | |
5 | pad_mode | int | 0 | |
6 | avgpool_count_include_pad | int | 0 | |
7 | adaptive_pooling | int | 0 | |
8 | out_w | int | 0 | |
11 | kernel_h | int | kernel_w | |
12 | stride_h | int | stride_w | |
13 | pad_top | int | pad_left | |
14 | pad_right | int | pad_left | |
15 | pad_bottom | int | pad_top | |
18 | out_h | int | out_w |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
x2 = pad(x, pads)
x3 = pooling1d(x2, kernel, stride)
param id | name | type | default | description |
---|---|---|---|---|
0 | pooling_type | int | 0 | |
1 | kernel_w | int | 0 | |
2 | stride_w | int | 1 | |
3 | pad_left | int | 0 | |
4 | global_pooling | int | 0 | |
5 | pad_mode | int | 0 | |
6 | avgpool_count_include_pad | int | 0 | |
7 | adaptive_pooling | int | 0 | |
8 | out_w | int | 0 | |
14 | pad_right | int | pad_left |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
x2 = pad(x, pads)
x3 = pooling3d(x2, kernel, stride)
param id | name | type | default | description |
---|---|---|---|---|
0 | pooling_type | int | 0 | |
1 | kernel_w | int | 0 | |
2 | stride_w | int | 1 | |
3 | pad_left | int | 0 | |
4 | global_pooling | int | 0 | |
5 | pad_mode | int | 0 | |
6 | avgpool_count_include_pad | int | 0 | |
7 | adaptive_pooling | int | 0 | |
8 | out_w | int | 0 | |
11 | kernel_h | int | kernel_w | |
12 | stride_h | int | stride_w | |
13 | pad_top | int | pad_left | |
14 | pad_right | int | pad_left | |
15 | pad_bottom | int | pad_top | |
16 | pad_behind | int | pad_front | |
18 | out_h | int | out_w | |
21 | kernel_d | int | kernel_w | |
22 | stride_d | int | stride_w | |
23 | pad_front | int | pad_left | |
28 | out_d | int | out_w |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
y = pow((shift + x * scale), power)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | power | float | 1.f | |
1 | scale | float | 1.f | |
2 | shift | float | 0.f |
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | num_slope | int | 0 |
weight | type | shape |
---|---|---|
slope_data | float | [num_slope] |
y = float2int8(x * scale)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | scale_data_size | int | 1 |
weight | type | shape |
---|---|---|
scale_data | float | [scale_data_size] |
y = reduce_op(x * coeff)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | operation | int | 0 | |
1 | reduce_all | int | 1 | |
2 | coeff | float | 1.f | |
3 | axes | array | [ ] | |
4 | keepdims | int | 0 | |
5 | fixbug0 | int | 0 | hack for bug fix, should be 1 |
Operation type:
- 0 = SUM
- 1 = ASUM
- 2 = SUMSQ
- 3 = MEAN
- 4 = MAX
- 5 = MIN
- 6 = PROD
- 7 = L1
- 8 = L2
- 9 = LogSum
- 10 = LogSumExp
if x < 0 y = x * slope
else y = x
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | slope | float | 0.f |
if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc
if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | stride | int | 1 | |
1 | mode | int | 0 |
x2 = x * scale_in + bias
x3 = activation(x2)
y = float2int8(x3 * scale_out)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | scale_in_data_size | int | 1 | |
1 | scale_out_data_size | int | 1 | |
2 | bias_data_size | int | 0 | |
3 | activation_type | int | 0 | |
4 | activation_params | int | [ ] |
weight | type | shape |
---|---|---|
scale_in_data | float | [scale_in_data_size] |
scale_out_data | float | [scale_out_data_size] |
bias_data | float | [bias_data_size] |
if permute == 1 y = hwc2chw(reshape(chw2hwc(x)))
else y = reshape(x)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | w | int | -233 | |
1 | h | int | -233 | |
11 | d | int | -233 | |
2 | c | int | -233 | |
3 | permute | int | 0 |
Reshape flag:
- 0 = copy from bottom
- -1 = remaining
- -233 = drop this dim(default)
split x along outmost axis into part x0, x1 ...
root mean square normalize for each part x0, x1 ...
y = x * gamma by elementwise
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | affine_size | int | 0 | |
1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
2 | affine | int | 1 |
weight | type | shape |
---|---|---|
gamma_data | float | [affine_size] |
Apply a single-layer RNN to a feature sequence of T
timesteps. The input blob shape is [w=input_size, h=T]
and the output blob shape is [w=num_output, h=T]
.
y = rnn(x)
y0, hidden y1 = rnn(x0, hidden x1)
- one_blob_only if bidirectional
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | hidden size of output |
1 | weight_data_size | int | 0 | total size of weight matrix |
2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
weight | type | shape |
---|---|---|
weight_xc_data | float/fp16/int8 | [input_size, num_output, num_directions] |
bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] |
weight_hc_data | float/fp16/int8 | [num_output, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
if scale_data_size == -233 y = x0 * x1
else y = x * scale + bias
- one_blob_only if scale_data_size != -233
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | scale_data_size | int | 0 | |
1 | bias_term | int | 0 |
weight | type | shape |
---|---|---|
scale_data | float | [scale_data_size] |
bias_data | float | [scale_data_size] |
if x < 0 y = (exp(x) - 1.f) * alpha * lambda
else y = x * lambda
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | alpha | float | 1.67326324f | |
1 | lambda | float | 1.050700987f |
if x < -lambd y = x + bias
if x > lambd y = x - bias
else y = x
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | bias | float | 0.0f | |
1 | lambd | float | 0.5f |
if reverse == 0 y = shufflechannel(x) by group
if reverse == 1 y = shufflechannel(x) by channel / group
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | group | int | 1 | |
1 | reverse | int | 0 |
y = 1 / (1 + exp(-x))
- one_blob_only
- support_inplace
split x along axis into slices, each part slice size is based on slices array
param id | name | type | default | description |
---|---|---|---|---|
0 | slices | array | [ ] | |
1 | axis | int | 0 | |
2 | indices | array | [ ] |
softmax(x, axis)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | axis | int | 0 | |
1 | fixbug0 | int | 0 | hack for bug fix, should be 1 |
y = log(exp(x) + 1)
- one_blob_only
- support_inplace
x1 = pad(x) if center
y = stft(x1)
y = y / sqrt(norm) if normalized
if power == 0 return y as real
if power == 1 return magnitude
if power == 2 return square of magnitude
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | n_fft | int | 0 | |
1 | power | int | 0 | |
2 | hoplen | int | n_fft / 4 | |
3 | winlen | int | n_fft | |
4 | window_type | int | 0 | 0=ones 1=hann 2=hamming |
5 | center | int | 1 | |
6 | pad_type | int | 2 | 0=CONSTANT 1=REPLICATE 2=REFLECT |
7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy |
8 | onesided | int | 1 |
y0, y1 ... = x
y = x / (1 + exp(-x))
- one_blob_only
- support_inplace
y = tanh(x)
- one_blob_only
- support_inplace
if x > threshold y = 1
else y = 0
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | threshold | float | 0.f |
y = repeat tiles along axis for x
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | axis | int | 0 | |
1 | tiles | int | 1 | |
2 | repeats | array | [ ] |
y = unaryop(x)
- one_blob_only
- support_inplace
param id | name | type | default | description |
---|---|---|---|---|
0 | op_type | int | 0 | Operation type as follows |
Operation type:
- 0 = ABS
- 1 = NEG
- 2 = FLOOR
- 3 = CEIL
- 4 = SQUARE
- 5 = SQRT
- 6 = RSQ
- 7 = EXP
- 8 = LOG
- 9 = SIN
- 10 = COS
- 11 = TAN
- 12 = ASIN
- 13 = ACOS
- 14 = ATAN
- 15 = RECIPROCAL
- 16 = TANH
- 17 = LOG10
- 18 = ROUND
- 19 = TRUNC
y = unfold(x)
- one_blob_only
param id | name | type | default | description |
---|---|---|---|---|
0 | num_output | int | 0 | |
1 | kernel_w | int | 0 | |
2 | dilation_w | int | 1 | |
3 | stride_w | int | 1 | |
4 | pad_left | int | 0 | |
11 | kernel_h | int | kernel_w | |
12 | dilation_h | int | dilation_w | |
13 | stride_h | int | stride_w | |
14 | pad_top | int | pad_left | |
15 | pad_right | int | pad_left | |
16 | pad_bottom | int | pad_top |