Source codes and datasets for EMNLP 2020 paper Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph
- python3 (tested on 3.6.6)
- pytorch (tested on 1.5.0)
Unpack the data files
unzip data.zip
and there will be five datasets under folder data
.
# dataset FB15K-237-10%
data/FB15K-237-10
# dataset FB15K-237-20%
data/FB15K-237-20
# dataset FB15K-237-50%
data/FB15K-237-50
# dataset NELL23K
data/NELL23K
# dataset WD-singer
data/WD-singer
./experiment.sh configs/<dataset>.sh --process_data <gpu-ID>
dataset
is the name of datasets. In our experiments, dataset
could be fb15k-237-10
, fb15k-237-20
, fb15k-237-50
, nell23k
and wd-singer
. <gpu-ID>
is a non-negative integer number representing the GPU index.
./experiment-emb.sh configs/<dataset>-<model>.sh --train <gpu-ID>
dataset
is the name of datasets and model
is the name of knowledge graph embedding model. In our experiments, dataset
could be fb15k-237-10
, fb15k-237-20
, fb15k-237-50
, nell23k
and wd-singer
, model
could be conve
. <gpu-ID>
is a non-negative integer number representing the GPU index.
# take FB15K-237-20% for example
./experiment-rs.sh configs/fb15k-237-20-rs.sh --train <gpu-ID>
# take FB15K-237-20% for example
./experiment-rs.sh configs/fb15k-237-20-rs.sh --inference <gpu-ID>
If you use the code, please cite this paper:
Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, Suhui Wu. Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph. The Conference on Empirical Methods in Natural Language Processing (EMNLP 2020).