Skip to content
/ DacKGR Public

Source codes and datasets for EMNLP 2020 paper "Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph"

License

Notifications You must be signed in to change notification settings

THU-KEG/DacKGR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DacKGR

Source codes and datasets for EMNLP 2020 paper Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph

Requirements

  • python3 (tested on 3.6.6)
  • pytorch (tested on 1.5.0)

Data Preparation

Unpack the data files

unzip data.zip

and there will be five datasets under folder data.

# dataset FB15K-237-10%
data/FB15K-237-10

# dataset FB15K-237-20%
data/FB15K-237-20

# dataset FB15K-237-50%
data/FB15K-237-50

# dataset NELL23K
data/NELL23K

# dataset WD-singer
data/WD-singer

Data Processing

./experiment.sh configs/<dataset>.sh --process_data <gpu-ID>

dataset is the name of datasets. In our experiments, dataset could be fb15k-237-10, fb15k-237-20, fb15k-237-50, nell23k and wd-singer. <gpu-ID> is a non-negative integer number representing the GPU index.

Pretrain Knowledge Graph Embedding

./experiment-emb.sh configs/<dataset>-<model>.sh --train <gpu-ID>

dataset is the name of datasets and model is the name of knowledge graph embedding model. In our experiments, dataset could be fb15k-237-10, fb15k-237-20, fb15k-237-50, nell23k and wd-singer, model could be conve. <gpu-ID> is a non-negative integer number representing the GPU index.

Train

# take FB15K-237-20% for example
./experiment-rs.sh configs/fb15k-237-20-rs.sh --train <gpu-ID> 

Test

# take FB15K-237-20% for example
./experiment-rs.sh configs/fb15k-237-20-rs.sh --inference <gpu-ID> 

Cite

If you use the code, please cite this paper:

Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei Zhang, Yichi Zhang, Hao Kong, Suhui Wu. Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph. The Conference on Empirical Methods in Natural Language Processing (EMNLP 2020).

About

Source codes and datasets for EMNLP 2020 paper "Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published