Skip to content

Commit

Permalink
Update README with new install instructions
Browse files Browse the repository at this point in the history
  • Loading branch information
kysolvik authored Jun 12, 2024
1 parent 2eeb150 commit 72f2c15
Showing 1 changed file with 13 additions and 20 deletions.
33 changes: 13 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,30 +20,22 @@ Neural Networks,Volume 153, 530-552, ISSN 0893-6080, https://doi.org/10.1016/j.n

## Installation

We recommend setting up a virtual environment using either [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) or [virtualenv](https://virtualenv.pypa.io/en/latest/user_guide.html).
#### Clone Repo:

```bash
git clone [email protected]:StevePny/DataAssimBench.git
```

#### Set Up Conda Environment

```bash
cd DataAssimBench
conda env create -f environment.yml
conda activate dab
```

#### Install dabench
```bash
pip install .
pip install -e ".[full]"
```

#### Install dependencies (optional)
The user may have to manually install:
Note: this will create a full installation including the ability to access cloud data or interface with other packages such as qgs. For a minimal installation, run:

```bash
conda install -c conda-forge jax
conda install -c conda-forge pyqg
pip install -e .
```

## Quick Start
Expand Down Expand Up @@ -76,7 +68,7 @@ All data objects are customizable.

For data-generators (e.g. numerical models such as Lorenz63, Lorenz96, SQGTurb), this means you can change initial conditions, model parameters, timestep size, number of timesteps, etc.

For data-downloaders (e.g. ENSOIDX, AWS, GCP), this means changing which variables you download, the lat/lon bounding box, the time period, etc.
For data-downloaders (e.g. ENSOIDX, GCP), this means changing which variables you download, the lat/lon bounding box, the time period, etc.

The recommended way of specifying options is to pass a keyword argument (kwargs) dictionary. The exact options vary between the different types of data objects, so be sure to check the specific documentation for your chosen generator/downloader more info.

Expand All @@ -91,13 +83,14 @@ l96_obj.generate(n_steps=1000) # Generate Lorenz96 simulation data
l96_obj.values # View the output values
```

- For example, for the Amazon Web Services (AWS) ERA5 data-downloader, we can select our variables and time period like this:
- For example, for the Google Cloud (GCP) ERA5 data-downloader, we can select our variables and time period like this:

```python
aws_options = {'variables': ['air_pressure_at_mean_sea_level', 'sea_surface_temperature'],
'years': [1984, 1985]}
aws_obj = data.AWS(**aws_options) # Create data generator object
aws_obj.load() # Loads data. Can also use aws_obj.generate()
aws_obj.values # View the output values
gcp_options = {'variables': ['2m_temperature', 'sea_surface_temperature'],
'date_start': '2020-06-01'
'date_end': '2020-06-07'}
gcp_obj = data.GCP(**gcp_options) # Create data generator object
gcp_obj.load() # Loads data. Can also use aws_obj.generate()
gcp_obj.values # View the output values
```

0 comments on commit 72f2c15

Please sign in to comment.