Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Esto debería mejorar bastante la velocidad del modelo #2

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 40 additions & 22 deletions dsgd/DSModelMultiQ.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,10 @@
import dill
# import pickle
from torch import nn
from torch.nn.functional import pad
import numpy as np
from scipy.stats import norm
from itertools import count

from dsgd.DSRule import DSRule
from dsgd.core import create_random_maf_k
Expand All @@ -27,6 +29,7 @@ def __init__(self, k, precompute_rules=False):
self.precompute_rules = precompute_rules
self.rmap = {}
self.active_rules = []
self._all_rules = None

def add_rule(self, pred, m_sing=None, m_uncert=None):
"""
Expand Down Expand Up @@ -54,33 +57,48 @@ def forward(self, X):
:param X: Set of inputs
:return: Set of prediction for each input in one hot encoding format
"""
out = torch.zeros(len(X), self.k)
ms = torch.stack(self._params)
for i in range(len(X)):
sel = self._select_rules(X[i, 1:], int(X[i, 0].item()))
if len(sel) == 0:
# raise RuntimeError("No rule especified for input No %d" % i)
# print("Warning: No rule especified for input No %d" % i)
out[i] = torch.ones((self.k,)) / self.k
else:
mt = torch.index_select(ms, 0, torch.LongTensor(sel))
qt = mt[:, :-1] + mt[:, -1].view(-1, 1) * torch.ones_like(mt[:, :-1])
res = qt.prod(0)
# if torch.isnan(res).any():
# print(self._params)
# print(mt)
# print(qt)
# print(res)
# raise RuntimeError("NaN found in computation")
if res.sum().item() <= 1e-16:
res = res + 1e-16
out[i] = res / res.sum()
else:
out[i] = res / res.sum()
# transform to commonalities before selecting the rules that apply
qs = ms[:, :-1] + ms[:, -1].view(-1, 1) * torch.ones_like(ms[:, :-1])
qt = qs.repeat(len(X), 1, 1)
vectors, indices = X[:, 1:], X[:, 0].long()
sel = self._select_all_rules(vectors, indices)
# replace rules that don't apply with ones
qt[sel] = 1
res = qt.prod(1)
res2 = res.clone()
res[res2.sum(1) <= 1e-16] += 1e-16
out = res / res.sum(1, keepdim=True)
return out

def clear_rmap(self):
self.rmap = {}
self._all_rules = None

def _select_all_rules(self, X, indices):
"""
This works based on the assumption that indices will be
provided in order. Otherwise, the function may return uninitialized
values.
:return a bool tensor with shape (len(X), num_rules) with Trues for the rules that don't apply
"""
if self._all_rules is None:
self._all_rules = torch.zeros(0, self.n, dtype=torch.bool)
max_index = torch.max(indices)
len_all_rules = len(self._all_rules)
if max_index < len_all_rules:
return self._all_rules[indices]
else:
desired_len = max_index + 1
padding = (0, 0, 0, desired_len-len_all_rules)
self._all_rules = pad(self._all_rules, padding)
sel = torch.zeros(len(X), self.n, dtype=torch.bool)
X = X.data.numpy()
for i, sample, index in zip(count(), X, indices):
for j in range(self.n):
sel[i, j] = not bool(self.preds[j](sample))
self._all_rules[index] = sel[i]
return sel

def normalize(self):
"""
Expand Down