Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
nuscenes-mini
1.基本环境安装
conda create -n fastbev python=3.8
conda activate fastbev
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
安装mmcv-full安装时终端会卡住,不是卡住,是下载时间比较长,耐心等待
pip install mmcv-full==1.4.0
安装mmdet
pip install mmdet==2.14.0
安装mmdet
pip install mmsegmentation==0.14.1
2.下载fastbev工程
git clone https://github.com/Sense-GVT/Fast-BEV.git
激活虚拟环境
conda activate fastbev
conda install setuptools==58.0.4
进入Fast-BEV
cd Fast-BEV
配置所需依赖包
pip install -v -e .
or "python setup.py develop"
3.查看版本
python -c 'import mmcv;import mmdet;import mmdet3d;import mmseg;print(mmcv.version);print(mmdet.version);print(mmdet3d.version);print(mmseg.version)'
4.准备数据集
5.数据集转换为FastBEV支持格式
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --workers 10 --version v1.0-mini
生成索引
python tools/data_converter/nuscenes_seq_converter.py
分布式训练
python tools/train.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py --work-dir work_dir --gpu-ids 0
PC单卡训练
dist_train.sh configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py 1
推理测试
python tools/test.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py pretrained_models/epoch_20.pth --out output/result.pkl
可视化
python tools/misc/visualize_results.py configs/fastbev/exp/paper/fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.py --result output/result.pkl --show-dir show_dir
具体详细操作参见
https://blog.csdn.net/h904798869/article/details/130317240