Jina is an open-source framework for building scalable multi modal AI apps on Production. LangChain is another open-source framework for building applications powered by LLMs.
langchain-serve helps you deploy your LangChain apps on Jina AI Cloud in just a matter of seconds. You can now benefit from the scalability and serverless architecture of the cloud without sacrificing the ease and convenience of local development. OR you can also deploy your LangChain apps on your own infrastructure making sure your data remains private.
Give us a ⭐ and tell us what more you'd like to see!
langchain-serve currently wraps following apps as a service to be deployed on Jina AI Cloud with one command.
AutoGPT is an "AI agent" that given a goal in natural language, will attempt to achieve it by breaking it into sub-tasks and using the internet and other tools in an automatic loop.
Show usage
-
Deploy
autogpt
on Jina AI Cloud with one commandlc-serve deploy autogpt
Show command output
╭──────────────┬────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ App ID │ autogpt-6cbd489454 │ ├──────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ Phase │ Serving │ ├──────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ Endpoint │ wss://autogpt-6cbd489454.wolf.jina.ai │ ├──────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ App logs │ dashboards.wolf.jina.ai │ ├──────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ Swagger UI │ https://autogpt-6cbd489454.wolf.jina.ai/docs │ ├──────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ OpenAPI JSON │ https://autogpt-6cbd489454.wolf.jina.ai/openapi.json │ ╰──────────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────╯
-
Integrate autogpt with external services using APIs. Get a flavor of the integration on your CLI with
lc-serve playground autogpt
Babyagi is a task-driven autonomous agent that uses LLMs to create, prioritize, and execute tasks. It is a general-purpose AI agent that can be used to automate a wide variety of tasks.
Show usage
-
Deploy
babyagi
on Jina AI Cloud with one commandlc-serve deploy babyagi
-
Integrate babyagi with external services using our Websocket API. Get a flavor of the integration on your CLI with
lc-serve playground babyagi
pandas-ai integrates LLM capabilities into Pandas, to make dataframes conversational in Python code. Thanks to langchain-serve, we can now expose pandas-ai APIs on Jina AI Cloud in just a matter of seconds.
Show usage
-
Deploy pandas-ai on Jina AI Cloud
lc-serve deploy pandas-ai
Show command output
╭──────────────┬─────────────────────────────────────────────────────────────────────────────────╮ │ App ID │ pandasai-06879349ca │ ├──────────────┼─────────────────────────────────────────────────────────────────────────────────┤ │ Phase │ Serving │ ├──────────────┼─────────────────────────────────────────────────────────────────────────────────┤ │ Endpoint │ wss://pandasai-06879349ca.wolf.jina.ai │ ├──────────────┼─────────────────────────────────────────────────────────────────────────────────┤ │ App logs │ dashboards.wolf.jina.ai │ ├──────────────┼─────────────────────────────────────────────────────────────────────────────────┤ │ Swagger UI │ https://pandasai-06879349ca.wolf.jina.ai/docs │ ├──────────────┼─────────────────────────────────────────────────────────────────────────────────┤ │ OpenAPI JSON │ https://pandasai-06879349ca.wolf.jina.ai/openapi.json │ ╰──────────────┴─────────────────────────────────────────────────────────────────────────────────╯
-
Upload your DataFrame to Jina AI Cloud (Optional - you can also use a publicly available CSV)
-
Define your DataFrame in a Python file
# dataframe.py import pandas as pd df = pd.DataFrame(some_data)
-
Upload your DataFrame to Jina AI Cloud using
<module>:<variable>
syntaxlc-serve util upload-df dataframe:df
-
-
Conversationalize your DataFrame using pandas-ai APIs. Get a flavor of the integration with a local playground on your CLI with
lc-serve playground pandas-ai <host>
pdfqna
is a simple question answering bot that uses LLMs to answer questions on PDF documents, showcasing the how easy it is to integrate langchain apps on Jina AI Cloud.
Show usage
-
Deploy
pdf_qna
on Jina AI Cloud with one commandlc-serve deploy pdf-qna
-
Get a flavor of the integration with Streamlit playground on your CLI with
lc-serve playground pdf-qna
-
Expand the Q&A bot to multiple languages, different document types & integrate with external services using simple REST APIs.
🔥 Secure, Scalable, Serverless, Streaming REST/Websocket APIs on Jina AI Cloud.
- 🌎 Globally available REST/Websocket APIs with automatic TLS certs.
- 🌊 Stream LLM interactions in real-time with Websockets.
- 👥 Enable human in the loop for your agents.
- 🔑 Protect your APIs with API authorization using Bearer tokens.
- 📄 Swagger UI, and OpenAPI spec included with your APIs.
- ⚡️ Serverless, autoscaling apps that scales automatically with your traffic.
- 📁 Persistent storage (EFS) mounted on your app for your data.
- 📊 Builtin logging, monitoring, and traces for your APIs.
- 🤖 No need to change your code to manage APIs, or manage dockerfiles, or worry about infrastructure!
- 🚀 Export your apps as Kubernetes or Docker Compose YAMLs with single command.
- 👉
lc-serve export app --kind <kubernetes/docker-compose> --path .
- 📦 Deploy your app on your own internal infrastructure with your own security policies.
- 📞 Talk to us if you need all the features of Jina AI Cloud on your own infrastructure.
Let's first install langchain-serve
using pip.
pip install langchain-serve
Let's build & deploy a custom agent using this example taken from LangChain documentation.
Show example
Show agent code (app.py)
# app.py
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain import OpenAI, SerpAPIWrapper, LLMChain
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
]
prefix = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:"""
suffix = """Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "agent_scratchpad"]
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
Thought: I need to find out the population of Canada
Action: Search
Action Input: Population of Canada 2023
Observation: The current population of Canada is 38,610,447 as of Saturday, February 18, 2023, based on Worldometer elaboration of the latest United Nations data. Canada 2020 population is estimated at 37,742,154 people at mid year according to UN data.
Thought: I now know the final answer
Final Answer: Arrr, Canada be havin' 38,610,447 scallywags livin' there as of 2023!
> Finished chain.
Refactor your code to function(s) that should be served with @serving
decorator
Show updated agent code (app.py)
# app.py
from langchain import LLMChain, OpenAI, SerpAPIWrapper
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from lcserve import serving
@serving
def ask(input: str) -> str:
search = SerpAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
)
]
prefix = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:"""
suffix = """Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "agent_scratchpad"],
)
print(prompt.template)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
return agent_executor.run(input)
if __name__ == "__main__":
ask('How many people live in canada as of 2023?')
- We moved our code to an
ask
function. - Added type hints to the function parameters (input and output), so API definition can be generated.
- Imported
from lcserve import serving
and added@serving
decorator to theask
function. - Added
if __name__ == "__main__":
block to test the function locally.
Create a requirements.txt
file in your app directory to ensure all necessary dependencies are installed.
Show requirements.txt
# requirements.txt
openai
google-search-results
Run lc-serve deploy local app
to test your API locally.
app
is the name of the module that contains theask
function.
lc-serve deploy local app
Show output
────────────────────────────────────────────────────────────────────────────────────────────────────── 🎉 Flow is ready to serve! ───────────────────────────────────────────────────────────────────────────────────────────────────────
╭──────────────────────── 🔗 Endpoint ────────────────────────╮
│ ⛓ Protocol HTTP │
│ 🏠 Local 0.0.0.0:8080 │
│ 🔒 Private 192.168.29.185:8080 │
│ 🌍 Public 2405:201:d007:e8e7:2c33:cf8e:ed66:2018:8080 │
╰─────────────────────────────────────────────────────────────╯
╭─────────── 💎 HTTP extension ────────────╮
│ 💬 Swagger UI .../docs │
│ 📚 Redoc .../redoc │
╰──────────────────────────────────────────╯
Let's open the Swagger UI to test our API locally. With Try it out
button, we can test our API with different inputs.
Let's test our local API with How many people live in canada as of 2023?
input with a cURL command.
curl -X 'POST' \
'http://localhost:8080/ask' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"input": "How many people live in canada as of 2023?",
"envs": {
"OPENAI_API_KEY": "'"${OPENAI_API_KEY}"'",
"SERPAPI_API_KEY": "'"${SERPAPI_API_KEY}"'"
}
}'
{
"result": "Arrr, there be 38,645,670 people livin' in Canada as of 2023!",
"error": "",
"stdout": "Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n\nSearch: useful for when you need to answer questions about current events\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin! Remember to speak as a pirate when giving your final answer. Use lots of \"Args\"\n\n Question: {input}\n {agent_scratchpad}\n\n\n\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n\u001b[32;1m\u001b[1;3m\nThought: I need to find out how many people live in Canada\nAction: Search\nAction Input: How many people live in Canada as of 2023\u001b[0m\nObservation: \u001b[36;1m\u001b[1;3mThe current population of Canada is 38,645,670 as of Wednesday, March 29, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\nThought:\u001b[32;1m\u001b[1;3m I now know the final answer\nFinal Answer: Arrr, there be 38,645,670 people livin' in Canada as of 2023!\u001b[0m\n\n\u001b[1m> Finished chain.\u001b[0m"
}
POST /ask
is generated fromask
function defined inapp.py
.input
is an argrment defined inask
function.envs
is a dictionary of environment variables that will be passed to all the functions decorated with@serving
decorator.- return type of
ask
function isstr
. So,result
would carry the return value ofask
function. - If there is an error,
error
would carry the error message. stdout
would carry the output of the function decorated with@serving
decorator.
Run lc-serve deploy jcloud app
to deploy your API to Jina AI Cloud.
# Login to Jina AI Cloud
jina auth login
# Deploy your app to Jina AI Cloud
lc-serve deploy jcloud app
Show complete output
⠇ Pushing `/tmp/tmp7kt5qqrn` ...🔐 You are logged in to Jina AI as ***. To log out, use jina auth logout.
╭────────────────────────── Published ───────────────────────────╮
│ │
│ 📛 Name n-64a15 │
│ 🔗 Jina Hub URL https://cloud.jina.ai/executor/6p1zio87/ │
│ 👀 Visibility public │
│ │
╰────────────────────────────────────────────────────────────────╯
╭─────────────────────── 🎉 Flow is available! ───────────────────────╮
│ │
│ ID langchain-ee4aef57d9 │
│ Gateway (Http) https://langchain-ee4aef57d9-http.wolf.jina.ai │
│ Dashboard https://dashboard.wolf.jina.ai/flow/ee4aef57d9 │
│ │
╰─────────────────────────────────────────────────────────────────────╯
╭──────────────┬─────────────────────────────────────────────────────────────╮
│ AppID │ langchain-ee4aef57d9 │
├──────────────┼─────────────────────────────────────────────────────────────┤
│ Phase │ Serving │
├──────────────┼─────────────────────────────────────────────────────────────┤
│ Endpoint │ https://langchain-ee4aef57d9-http.wolf.jina.ai │
├──────────────┼─────────────────────────────────────────────────────────────┤
│ Swagger UI │ https://langchain-ee4aef57d9-http.wolf.jina.ai/docs │
├──────────────┼─────────────────────────────────────────────────────────────┤
│ OpenAPI JSON │ https://langchain-ee4aef57d9-http.wolf.jina.ai/openapi.json │
╰──────────────┴─────────────────────────────────────────────────────────────╯
Let's open the Swagger UI to test our API on Jina AI Cloud. With Try it out
button, we can test our API with different inputs.
Let's test the API on JCloud with How many people live in canada as of 2023?
input with a cURL command (Replace the Hostname with your own hostname):
curl -X 'POST' \
'https://langchain-ee4aef57d9-http.wolf.jina.ai/ask' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"input": "How many people live in canada as of 2023?",
"envs": {
"OPENAI_API_KEY": "'"${OPENAI_API_KEY}"'",
"SERPAPI_API_KEY": "'"${SERPAPI_API_KEY}"'"
}
}'
{
"result": "Arrr, there be 38,645,670 people livin' in Canada as of 2023!",
"error": "",
"stdout": "Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n\nSearch: useful for when you need to answer questions about current events\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [Search]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin! Remember to speak as a pirate when giving your final answer. Use lots of \"Args\"\n\n Question: {input}\n {agent_scratchpad}\n\n\n\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n\u001b[32;1m\u001b[1;3m\nThought: I need to find out how many people live in Canada\nAction: Search\nAction Input: How many people live in Canada as of 2023\u001b[0m\nObservation: \u001b[36;1m\u001b[1;3mThe current population of Canada is 38,645,670 as of Wednesday, March 29, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\nThought:\u001b[32;1m\u001b[1;3m I now know the final answer\nFinal Answer: Arrr, there be 38,645,670 people livin' in Canada as of 2023!\u001b[0m\n\n\u001b[1m> Finished chain.\u001b[0m"
}
- In a matter of few seconds, we've deployed our API on Jina AI Cloud 🎉
- The API is serverless and scalable, so we can scale up the API to handle more requests.
- You might observe a delay in the first request, that's due to the warm-up time of the API. Subsequent requests will be faster.
- The API includes a Swagger UI and the OpenAPI specification, so it can be easily integrated with other services.
- Now, other agents can integrate with your agents on Jina AI Cloud thanks to the OpenAPI Agent 💡
To add an extra layer of security, we can integrate any custom API authorization by adding a auth
argument to the @serving
decorator.
Show code & gotchas
from lcserve import serving
def authorizer(token: str) -> Any:
if not token == 'mysecrettoken': # Change this to add your own authorization logic
raise Exception('Unauthorized') # Raise an exception if the request is not authorized
return 'userid' # Return any user id or object
@serving(auth=authorizer)
def ask(question: str, **kwargs) -> str:
auth_response = kwargs['auth_response'] # This will be 'userid'
return ...
@serving(websocket=True, auth=authorizer)
async def talk(question: str, **kwargs) -> str:
auth_response = kwargs['auth_response'] # This will be 'userid'
return ...
- Should accept only one argument
token
. - Should raise an Exception if the request is not authorized.
- Can return any object, which will be passed to the
auth_response
object underkwargs
to the functions. - Expects Bearer token in the
Authorization
header of the request. - Sample HTTP request with
curl
:curl -X 'POST' 'http://localhost:8080/ask' -H 'Authorization: Bearer mysecrettoken' -d '{ "question": "...", "envs": {} }'
- Sample WebSocket request with
wscat
:wscat -H "Authorization: Bearer mysecrettoken" -c ws://localhost:8080/talk
HITL for LangChain agents on production can be challenging since the agents are typically running on servers where humans don't have direct access. langchain-serve bridges this gap by enabling websocket APIs that allow for real-time interaction and feedback between the agent and a human operator.
Check out this example to see how you can enable HITL for your agents.
Every app deployed on Jina AI Cloud gets a persistent storage (EFS) mounted locally which can be accessed via workspace
kwarg in the @serving
function.
Show code
from lcserve import serving
@serving
def store(text: str, **kwargs):
workspace: str = kwargs.get('workspace')
path = f'{workspace}/store.txt'
print(f'Writing to {path}')
with open(path, 'a') as f:
f.writelines(text + '\n')
return 'OK'
@serving(websocket=True)
async def stream(**kwargs):
workspace: str = kwargs.get('workspace')
websocket: WebSocket = kwargs.get('websocket')
path = f'{workspace}/store.txt'
print(f'Streaming {path}')
async with aiofiles.open(path, 'r') as f:
async for line in f:
await websocket.send_text(line)
return 'OK'
Here, we are using the workspace
to store the incoming text in a file via the REST endpoint and streaming the contents of the file via the WebSocket endpoint.
If you already have a FastAPI app with pre-defined endpoints, you can use lc-serve
to deploy it on Jina AI Cloud.
lc-serve deploy jcloud --app filename:app
Show details
Let's take an example of a simple FastAPI app with directory structure
.
└── endpoints.py
# endpoints.py
from typing import Union
from fastapi import FastAPI
app = FastAPI()
@app.get("/status")
def read_root():
return {"Hello": "World"}
@app.get("/items/{item_id}")
def read_item(item_id: int, q: Union[str, None] = None):
return {"item_id": item_id, "q": q}
lc-serve deploy jcloud --app endpoints:app
lc-serve
is a simple CLI that helps you to deploy your agents on Jina AI Cloud (JCloud)
Description | Command |
---|---|
Deploy your app locally | lc-serve deploy local app |
Export your app as Kubernetes YAML | lc-serve export app --kind kubernetes --path . |
Export your app as Docker Compose YAML | lc-serve export app --kind docker-compose --path . |
Deploy your app on JCloud | lc-serve deploy jcloud app |
Deploy FastAPI app on JCloud | lc-serve deploy jcloud --app <app-name>:<app-object> |
Update existing app on JCloud | lc-serve deploy jcloud app --app-id <app-id> |
Get app status on JCloud | lc-serve status <app-id> |
List all apps on JCloud | lc-serve list |
Remove app on JCloud | lc-serve remove <app-id> |
For JCloud deployment, you can configure your application infrastructure by providing a YAML configuration file using the --config
option. The supported configurations are:
- Instance type (
instance
), as defined by Jina AI Cloud. - Minimum number of replicas for your application (
autoscale_min
). Setting it 0 enables serverless. - Disk size (
disk_size
), in GB. The default value is 1 GB.
For example:
instance: C4
autoscale_min: 0
disk_size: 1.5G
You can alternatively include a jcloud.yaml
file in your application directory with the desired configurations. However, please note that if the --config
option is explicitly used in the command line interface, the local jcloud.yaml file will be disregarded. The command line provided configuration file will take precedence.
If you don't provide a configuration file or a specific configuration isn't specified, the following default settings will be applied:
instance: C3
autoscale_min: 1
disk_size: 1G
Applications hosted on JCloud are priced in two categories:
Base credits
- Base credits are charged to ensure high availability for your application by maintaining at least one instance running continuously, ready to handle incoming requests.
- Actual credits charged for base credits are calculated based on the instance type as defined by Jina AI Cloud.
- By default, instance type
C3
is used with a minimum of 1 instance and Amazon EFS disk of size 1G, which means that if your application is served on JCloud, you will be charged ~10 credits per hour. - You can change the instance type and the minimum number of instances by providing a YAML configuration file using the
--config
option. For example, if you want to use instance typeC4
with a minimum of 0 replicas, and 2G EFS disk, you can provide the following configuration file:instance: C4 autoscale_min: 0 disk_size: 2G
Serving credits
- Serving credits are charged when your application is actively serving incoming requests.
- Actual credits charged for serving credits are calculated based on the credits for the instance type multiplied by the duration for which your application serves requests.
- You are charged for each second your application is serving requests.
Total credits charged = Base credits + Serving credits. (Jina AI Cloud defines each credit as €0.005)
Example 1:
Consider an HTTP application that has served requests for 10
minutes in the last hour and uses a custom config:
instance: C4
autoscale_min: 0
disk_size: 2G
Total credits per hour charged would be 3.33
. The calculation is as follows:
C4 instance has an hourly credit rate of 20.
EFS has hourly credit rate of 0.104 per GB.
Base credits = 0 + 2 * 0.104 = 0.208 (since `autoscale_min` is 0)
Serving credits = 20 * 10/60 = 3.33
Total credits per hour = 0.208 + 3.33 = 3.538
Example 2:
Consider a WebSocket application that had active connections for 20 minutes in the last hour and uses the default configuration.
instance: C3
autoscale_min: 1
disk_size: 1G
Total credits per hour charged would be 13.33
. The calculation is as follows:
C3 instance has an hourly credit rate of 10.
EFS has hourly credit rate of 0.104 per GB.
Base credits = 10 + 1 * 0.104 = 10.104 (since `autoscale_min` is 1)
Serving credits = 10 * 20/60 = 3.33
Total credits per hour = 10.104 + 3.33 = 13.434
lc-serve
command not found- My client that connects to the JCloud hosted App gets timed-out, what should I do?
- How to pass environment variables to the app?
- JCloud deployment failed at pushing image to Jina Hubble, what should I do?
- Debug babyagi playground request/response for external integration
lc-serve
command is registered during langchain-serve
installation. If you get command not found: lc-serve
error, please replace lc-serve
command with python -m lcserve
& retry.
If you make long HTTP/ WebSocket requests, the default timeout value (2 minutes) might not be suitable for your use case. You can provide a custom timeout value during JCloud deployment by using the --timeout
argument.
Additionally, for HTTP, you may also experience timeouts due to limitations in the OSS we used in langchain-serve
. While we are working to permanently address this issue, we recommend using HTTP/1.1 in your client as a temporary workaround.
For WebSocket, please note that the connection will be closed if idle for more than 5 minutes.
We provide 2 options to pass environment variables:
-
Use
--env
during app deployment to load env variables from a.env
file. For example,lc-serve deploy jcloud app --env some.env
will load all env variables fromsome.env
file and pass them to the app. These env variables will be available in the app asos.environ['ENV_VAR_NAME']
. -
You can also pass env variables while sending requests to the app both in HTTP and WebSocket.
envs
field in the request body is used to pass env variables. For example{ "question": "What is the meaning of life?", "envs": { "ENV_VAR_NAME": "ENV_VAR_VALUE" } }
Please use --verbose
and retry to get more information. If you are operating on computer with arm64
arch, please retry with --platform linux/amd64
so the image can be built correctly.
-
Start textual console in a terminal (exclude following groups to reduce the noise in logging)
textual console -x EVENT -x SYSTEM -x DEBUG
-
Start the playground with
--verbose
flag. Start interacting and see the logs in the console.lc-serve playground babyagi --verbose
Want to deploy your LLM apps on your own infrastructure with all capabilities of Jina AI Cloud?
- Serverless
- Autoscaling
- TLS certs
- Persistent storage
- End to end LLM observability
- and more on auto-pilot!
Join us on Discord and we'd be happy to hear more about your use case.