In this repository all the training and testing are done using sf_xs and tokyo_xs.
-
sf_xs size is 1,22 GB on disk and 103.869 items.
-
tokyo_xs size is 164,6 MB on disk and 13.090 items.
In addition two backbones and data augmentation is included:
backbones | augmentation |
---|---|
Wide ResNet50-2 | use_horizontal_flip |
densenet121 | degrees |
Best models results: Recall@1 / Recall@5
SF-XS val(R@1 / R@5) | SF-XS(R@1 / R@5) | Tokyo-XS(R@1 / R@5) |
---|---|---|
56.4 / 69.4 | 20.9 / 32.6 | 34.0 / 52.4 |
Results of different parameter for data augmentation:
Model | SF-XS val(R@1 / R@5) | SF-XS(R@1 / R@5) | Tokyo-XS(R@1 / R@5) |
---|---|---|---|
degree=5 | 56.6 / 69.5 | 22.2 / 35.0 | 33.3 / 54.3 |
degree=10 | 56.0 / 68.7 | 22.3 / 36.7 | 30.8 / 56.2 |
horizontal_flip=true | 55.9 / 69.6 | 19.7 / 32.6 | 31.1 / 54.3 |
Comparison between ResNet18 and VGG16: Recall@1 / Recall@5
Model | SF-XS val(R@1 / R@5) | SF-XS(R@1 / R@5) | Tokyo-XS(R@1 / R@5) |
---|---|---|---|
ResNet18 | 56.4 / 69.4 | 20.9 / 32.6 | 34.0 / 52.4 |
VGG16 | 70.0 / 80.8 | 36.5 / 50.7 | 51.7 / 74.0 |
Comparison of Performance between Adam and AdamW Optimizers
Dataset | Default (Adam lr e-5)(R@1 / R@5) | AdamW (lr e-5)(R@1 / R@5) |
---|---|---|
SF-XS val | 56.4 / 69.4 | 56.2 / 69.3 |
SF-XS test | 20.9 / 32.6 | 19.6 / 32.5 |
Tokyo-XS | 34.0 / 52.4 | 33.3 / 53.3 |