$ pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
$ pip install wandb
$ pip install tqdm
$ pip install opencv-python
This repository uses wandb for log images. To use the feature, sign in wanb and use below command for initialize your account.
$ wandb login ${YOU_API_KEY}
-
StyleGAN checkpoints
To download pretrained StyleGAN2 checkpoint, follow the instruction written in stylegan2-pytorch. Place checkpoint file into
pretrain_models/stylegan2-ffhq-config-f.pt
-
ID Loss Module
To download ID Loss module, use the command below.
$ wget https://github.com/LeslieZhoa/DCT-NET.Pytorch/releases/download/v0.0/model_ir_se50.pth -P ../pretrain_models
The above command will download the checkpoint file and place into
pretain_models/
path.
For training CCN, FFHQ-Aligned few shot (50 ~ 100) facial images with
It is recommended to use additional implementations such as Real-ESRGAN and SwinIR rather than using naive interpolation-based resizing algorithm.
However, the command below can be helpful to resize dataset to downsample using large scale (e.g.
$ python resize_datasets.py --dataset_dir ${DIR_YOUR_ORIGINAL_DATASET} --save_dir ${DIR_YOUR_RESIZED_DATASET} --size 1024
Place the images in DCTNet/datasets/CCN/${DIR_YOUR_DATASET}
For training CCN, use the below command. The appropriate number of itations varies depending on the dataset, but it is recommended to use about 1000.
$ python DCTNet/train.py \
--model ccn --batch_size 8 \
--checkpoint DCTNet/checkpoints/CCN/${DIR_FOR_SAVE_CKPT}/ \
--root DCTNet/datasets/CCN/${DIR_YOUR_DATASET} \
--lr 0.002 --print_interval 50 --save_interval 50 \
--task_name ${WANDB_TASK_NAME} \
Feel free to terminate the command at discretion.
The trained checkpoint will be saved in the format of DCTNet/checkpoints/CCN/${DIR_FOR_SAVE_CKPT}/StyleGAN/00X-000XXXXX.pth
. Model Blending may be used to secure a variety of data to be generated by CCN.
$ cd DCTNet/
$ python blend_models.py --model_path checkpoints/CCN/${DIR_FOR_SAVE_CKPT}/StyleGAN/00X-000XXXXX.pth --level 2 --blend_width 0
The above command generates blended model in same directory path DCTNet/checkpoints/CCN/${DIR_FOR_SAVE_CKPT}/StyleGAN/
. Generally low level, high blend_width blended models generate images similar to targe domain images.
The StyleGAN model often generates artifacts in some input noises. Gaussian Truncation is applied in default, but the strength can be change with config variable truncation
in model/styleganModule/config.py
.
Low truncation value can cut off the noises which model is not experienced (has high probability to generate artifacts), but it also hurts the variation of generated images.
TTN dataset images can be generated using blended model. It is needed to generate images for training (~10,000) and validation (~3,000) To train TTN. The number of image generating can be changed by modifying mx_gen_iters
config variable in model/styleganModule/config.py
.
$ cd DCTNet/utils/
$ python get_tcc_input.py --model_path ../checkpoints/CCN/${DIR_FOR_SAVE_CKPT}/StyleGAN/${BLENDED_MODEL_CKPT} --output_path ../datasets/TTN/${DIR_FOR_SAVE_TTN_DATASETS}
For training TTN, FFHQ images for training and validation are needed. Use this link to download FFHQ images for DCT-Net/DCTNet/datasets/TTN/img_ffhq/
and 3,000 images in DCT-Net/DCTNet/datasets/TTN/img_ffhq_val/
.
To use Perceptual Loss module, facial landmark detection should be done.
$ cd LVT
$ python get_face_expression.py --img_base ../DCTNet/img_ffhq/ --pool_num 2 --LVT .
-
Pretrained VGG
To download Pretrained VGG module, use the command below.
$ wget https://github.com/LeslieZhoa/DCT-NET.Pytorch/releases/download/v0.0/vgg19-dcbb9e9d.pth -P ../pretrain_models
P.S. Considering to change it by Caffe VGG
For training TTN, use the below command. The ${DIR_TTN_DATASETS_TRAIN}
and ${DIR_TTN_DATASETS_VAL}
are the directory for training and validation dataset directory generated by blended model. (Look above Generate TTN Training Images using Blended Model
session for detail.)
The appropriate number of itations varies depending on the dataset, but it is recommended to use about 1000.
$ python DCTNet/train.py \
--model ttn --batch_size 64 \
--checkpoint_path DCTNet/checkpoints/TTN/${DIR_FOR_SAVE_CKPT} \
--train_tgt_root DCTNet/datasets/TTN/${DIR_TTN_DATASETS_TRAIN}/ \
--val_tgt_root DCTNet/datasets/TTN/${DIR_TTN_DATASETS_VAL}/ \
--train_src_root DCT-Net/DCTNet/datasets/TTN/img_ffhq/ \
--val_src_root DCT-Net/DCTNet/datasets/TTN/img_ffhq_val/ \
--score_info DCTNet/pretrain_models/all_express_mean.npy \
--lr 2e-4 --print_interval 100 --save_interval 100 \
--task_name ${WANDB_TASK_NAME} \
Use below command to inference the result using trained checkpoint.
$ python inference.py --ckpt DCTNet/checkpoints/TTN/${DIR_FOR_SAVE_CKPT}/Pix2Pix/${INFERENCE_MODEL_CKPT} --img_path ${IMAGE_DIR_FOR_INFERENCE}