-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2966e0a
commit 28bb857
Showing
1 changed file
with
264 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
import glob | ||
import pandas as pd | ||
import numpy as np | ||
from scipy.stats import gmean | ||
import itertools | ||
|
||
pd.set_option('display.max_columns', None) | ||
|
||
# performance_index = 'SolverTime' | ||
# performance_index = 'NumberOfIterations' | ||
performance_index = "Number of infeasible nlp subproblems" | ||
threshold = 10 | ||
|
||
trace_file_column_names = [ | ||
'InputFileName', | ||
'ModelType', | ||
'SolverName', | ||
'NLP', | ||
'MIP', | ||
'JulianDate', | ||
'Direction', | ||
'NumberOfEquations', | ||
'NumberOfVariables', | ||
'NumberOfDiscreteVariables', | ||
'NumberOfNonZeros', | ||
'NumberOfNonlinearNonZeros', | ||
'OptionFile', | ||
'ModelStatus', | ||
'SolverStatus', | ||
'ObjectiveValue', | ||
'ObjectiveValueEstimate', | ||
'SolverTime', | ||
'NumberOfIterations', | ||
'NumberOfDomainViolations', | ||
'NumberOfNodes', | ||
# The following are user defined data in MindtPy | ||
"Best solution found time", | ||
"fixed nlp time", | ||
"mip time", | ||
"initialization time", | ||
"OA cut time", | ||
"Affine cut generation time", | ||
"Nogood cut generation time", | ||
"ECP cut generation time", | ||
"Regularization master time", | ||
"fp master time", | ||
"fp master time", | ||
"PyomoNLP time", | ||
"Number of infeasible nlp subproblems", | ||
] | ||
|
||
MODEL_STATUS_CODE = { | ||
1: "Optimal", | ||
2: "Locally Optimal", | ||
3: "Unbounded", | ||
4: "Infeasible", | ||
5: "Locally Infeasible", | ||
6: "Intermediate Infeasible", | ||
7: "Intermediate Nonoptimal", | ||
8: "Integer Solution", | ||
9: "Intermediate Non-Integer", | ||
10: "Integer Infeasible", | ||
11: "Licensing Problems - No Solution", | ||
12: "Error Unknown", | ||
13: "Error No Solution", | ||
14: "No Solution Returned", | ||
15: "Solved Unique", | ||
16: "Solved", | ||
17: "Solved Singular", | ||
18: "Unbounded - No Solution", | ||
19: "Infeasible - No Solution", | ||
} | ||
|
||
SOLVER_STATUS_CODE = { | ||
1: "Normal Completion", | ||
2: "Iteration Interrupt", | ||
3: "Resource Interrupt", | ||
4: "Terminated by Solver", | ||
5: "Evaluation Error Limit", | ||
6: "Capability Problems", | ||
7: "Licensing Problems", | ||
8: "User Interrupt", | ||
9: "Error Setup Failure", | ||
10: "Error Solver Failure", | ||
11: "Error Internal Solver Error", | ||
12: "Solve Processing Skipped", | ||
13: "Error System Failure", | ||
} | ||
|
||
file_paths = glob.glob('trace_file/*/*/*/*.trc') | ||
|
||
|
||
OA_method_list = [ | ||
"C-OA-Baron(c)", | ||
"C-OA-Baron(r)", | ||
"C-OA-Coramin(r)", | ||
"C-OA-FBBT-Coramin(r)", | ||
"OA", | ||
"OA-FBBT", | ||
] | ||
LPNLP_method_list = [ | ||
"C-LP/NLP-B&B-Baron(c)", | ||
"C-LP/NLP-B&B-Baron(r)", | ||
"C-LP/NLP-B&B-Coramin(r)", | ||
"C-LP/NLP-B&B-FBBT-Coramin(r)", | ||
"LP/NLP-B&B", | ||
"LP/NLP-B&B-FBBT", | ||
] | ||
|
||
GOA_method_list = [ | ||
"C-GOA-Baron(c)", | ||
"C-GOA-Baron(r)", | ||
"C-GOA-Coramin(r)", | ||
"C-GOA-FBBT-Coramin(r)", | ||
"GOA", | ||
"GOA-FBBT", | ||
] | ||
|
||
GLPNLP_method_list = [ | ||
"C-GLP/NLP-B&B-Baron(c)", | ||
"C-GLP/NLP-B&B-Baron(r)", | ||
"C-GLP/NLP-B&B-Coramin(r)", | ||
"C-GLP/NLP-B&B-FBBT-Coramin(r)", | ||
"GLP/NLP-B&B", | ||
"GLP/NLP-B&B-FBBT", | ||
] | ||
|
||
# Read the trace files and extract the data | ||
data = [] | ||
|
||
for filepath in file_paths: | ||
with open(filepath, 'r') as file: | ||
line = file.readline().strip() | ||
# Split the line into two parts | ||
parts = line.split('# ') | ||
first_part = parts[0].split(', ') | ||
second_part = parts[1].split('. ') | ||
row = first_part[:-1] | ||
|
||
# Extract key-value pairs from the second part | ||
for item in second_part: | ||
if 'at ' in item: | ||
best_solution_time = item.split('at ', 1)[1].split(' ')[0] | ||
row.append(best_solution_time) | ||
if ': ' in item: | ||
key, value = item.split(': ', 1) | ||
row.append(value) | ||
data.append(row) | ||
|
||
df = pd.DataFrame(data, columns=trace_file_column_names) | ||
df[performance_index] = df[performance_index].astype(float) | ||
df['SolverTime'] = df['SolverTime'].astype(float) | ||
|
||
|
||
status_result = ( | ||
df.groupby(['ModelStatus', 'SolverStatus']) | ||
.agg({'SolverTime': ['mean', 'count']}) | ||
.reset_index() | ||
) | ||
status_result['ModelStatus'] = ( | ||
status_result['ModelStatus'].astype(int).replace(MODEL_STATUS_CODE) | ||
) | ||
status_result['SolverStatus'] = ( | ||
status_result['SolverStatus'].astype(int).replace(SOLVER_STATUS_CODE) | ||
) | ||
print(status_result) | ||
|
||
# ModelStatus SolverStatus SolverTime | ||
# mean count | ||
# Error No Solution Error Solver Failure 91.080747 31 | ||
# Infeasible Terminated by Solver 11.113592 9 | ||
# Integer Solution Error Solver Failure 233.766983 22 | ||
# Integer Solution Terminated by Solver 681.507524 65 | ||
|
||
# For number of iterations | ||
# 2 Error No Solution Terminated by Solver 902.623097 43 | ||
# 3 No Solution Returned Resource Interrupt 900.839473 233 | ||
# 7 Integer Solution Resource Interrupt 903.812880 566 | ||
|
||
failed_status = [['13', '10'], ['4', '4'], ['8', '10'], ['8', '4']] | ||
failed_mask = df.apply( | ||
lambda row: [row['ModelStatus'], row['SolverStatus']] in failed_status, axis=1 | ||
) | ||
failed_instances_names = df[failed_mask]['InputFileName'].to_list() | ||
print('Failed instances:', failed_instances_names) | ||
|
||
# Read the convex and nonconvex instance lists | ||
with open('minlp_instances/convex_instances.txt', 'r') as file: | ||
convex_instance_list = [line.strip() for line in file] | ||
with open('minlp_instances/nonconvex_instances.txt', 'r') as file: | ||
nonconvex_instance_list = [line.strip() for line in file] | ||
|
||
convex_instance_list = list(set(convex_instance_list) - set(failed_instances_names)) | ||
nonconvex_instance_list = list( | ||
set(nonconvex_instance_list) - set(failed_instances_names) | ||
) | ||
|
||
# Filter out the simple instances solved within 10 seconds | ||
|
||
print('Filter out the simple instances solved within {} seconds'.format(threshold)) | ||
|
||
filtered_list = [] | ||
for baseline_method, method_list, instance_list in [ | ||
['OA', OA_method_list, convex_instance_list], | ||
['LP/NLP-B&B', LPNLP_method_list, convex_instance_list], | ||
['GOA', GOA_method_list, nonconvex_instance_list], | ||
['GLP/NLP-B&B', GLPNLP_method_list, nonconvex_instance_list], | ||
]: | ||
filtered_instance_list = set(instance_list) - set( | ||
df[(df['SolverName'] == baseline_method) & (df['SolverTime'] < threshold)][ | ||
'InputFileName' | ||
].to_list() | ||
) | ||
filtered_list += list(itertools.product(filtered_instance_list, method_list)) | ||
|
||
filtered_df = pd.DataFrame(filtered_list, columns=['InputFileName', 'SolverName']) | ||
df = pd.merge(df, filtered_df, on=['InputFileName', 'SolverName'], how='right') | ||
df[performance_index] = df[performance_index].fillna(900) | ||
|
||
group_sizes = df.groupby('SolverName').size().reset_index(name='count') | ||
print('group_sizes', group_sizes) | ||
|
||
|
||
# Calculate the shifted geometric mean | ||
def shifted_geometric_mean(group, shift_value): | ||
# Shift the values within the group | ||
shifted_values = group + shift_value | ||
|
||
# Calculate the geometric mean | ||
if len(shifted_values) == 0: | ||
return np.nan | ||
return gmean(shifted_values) - shift_value | ||
|
||
|
||
result = ( | ||
df.groupby('SolverName')[performance_index] | ||
.apply(lambda x: shifted_geometric_mean(x, shift_value=10)) | ||
.reset_index() | ||
) | ||
result.columns = ['method', 'shifted_geometric_mean'] | ||
|
||
for method_list, baseline_method in zip( | ||
[OA_method_list, GOA_method_list, LPNLP_method_list, GLPNLP_method_list], | ||
['OA', 'GOA', 'LP/NLP-B&B', 'GLP/NLP-B&B'], | ||
): | ||
method_result = result[result['method'].isin(method_list)].reset_index(drop=True) | ||
baseline_sgm = method_result.loc[ | ||
method_result['method'] == baseline_method, 'shifted_geometric_mean' | ||
].iloc[0] | ||
method_result['normalized_shifted_geometric_mean'] = ( | ||
method_result['shifted_geometric_mean'] / baseline_sgm | ||
) | ||
method_result['improvement'] = method_result[ | ||
'normalized_shifted_geometric_mean' | ||
].apply(lambda x: f"{(1-x):.2%}") | ||
method_result = method_result.iloc[::-1].reset_index(drop=True) | ||
|
||
print(method_result[['method', 'improvement']], '\n') | ||
method_result[['method', 'improvement']].to_csv( | ||
'performance_analysis_' + performance_index + '.csv', | ||
mode='a', | ||
header=True, | ||
index=False, | ||
) |