Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #576 | Add Dataloader Vimqa #678

Merged
merged 3 commits into from
May 31, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
187 changes: 187 additions & 0 deletions seacrowd/sea_datasets/vimqa/vimqa.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
import json
import os
from pathlib import Path

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """
@inproceedings{le-etal-2022-vimqa,
title = "{VIMQA}: A {V}ietnamese Dataset for Advanced Reasoning and Explainable Multi-hop Question Answering",
author = "Le, Khang and
Nguyen, Hien and
Le Thanh, Tung and
Nguyen, Minh",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\'e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.700",
pages = "6521--6529",
}
"""

_DATASETNAME = "vimqa"

_DESCRIPTION = """
VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs. The dataset is human-generated and has four main features:
The questions require advanced reasoning over multiple paragraphs.
Sentence-level supporting facts are provided, enabling the QA model to reason and explain the answer.
The dataset offers various types of reasoning to test the model's ability to reason and extract relevant proof.
The dataset is in Vietnamese, a low-resource language
"""

_HOMEPAGE = "https://github.com/vimqa/vimqa"

_LANGUAGES = ["vie"]

_LICENSE = Licenses.UNKNOWN.value
sabilmakbar marked this conversation as resolved.
Show resolved Hide resolved

_LOCAL = True

_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class VimqaDataset(datasets.GeneratorBasedBuilder):
"""VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_qa",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_qa",
subset_id=_DATASETNAME,
),
]

DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"_id": datasets.Value("string"),
sabilmakbar marked this conversation as resolved.
Show resolved Hide resolved
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"type": datasets.Value("string"),
"supporting_facts": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"sent_id": datasets.Value("int32"),
}
),
"context": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"sentences": datasets.features.Sequence(datasets.Value("string")),
}
),
}
)
else:
features = schemas.qa_features
features["meta"] = {
"supporting_facts": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"sent_id": datasets.Value("int32"),
}
),
"context": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"sentences": datasets.features.Sequence(datasets.Value("string")),
}
),
}

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_train.json")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_dev.json")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_test.json")},
),
]

def _generate_examples(self, filepath: Path) -> tuple[int, dict]:
with open(filepath, "r", encoding="utf-8") as f:
data = json.load(f)
for i, item in enumerate(data):
if self.config.schema == "source":
yield i, {
"_id": item["_id"],
sabilmakbar marked this conversation as resolved.
Show resolved Hide resolved
"question": item["question"],
"answer": item["answer"],
"type": item["type"],
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]],
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]],
}
else:
yield i, {
"id": str(i),
"question_id": item["_id"],
"document_id": "",
"question": item["question"],
"type": item["type"],
"choices": [],
"context": "",
"answer": [item["answer"]],
"meta": {
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]],
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]],
},
}