Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #583 | Add Dataloader multilingual-NLI-26lang-2mil7 #598

Merged
merged 3 commits into from
May 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd
from huggingface_hub import HfFileSystem

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = """\
@article{laurer_less_2022,
title = {Less Annotating, More Classifying: Addressing the Data Scarcity
Issue of Supervised Machine Learning with Deep Transfer Learning and
BERT-NLI},
url = {https://osf.io/74b8k},
language = {en-us},
urldate = {2022-07-28},
journal = {Preprint},
author = {Laurer, Moritz and
Atteveldt, Wouter van and
Casas, Andreu Salleras and
Welbers, Kasper},
month = jun,
year = {2022},
note = {Publisher: Open Science Framework},
}
"""

_DATASETNAME = "multilingual_nli_26lang"

_DESCRIPTION = """\
This dataset contains 2 730 000 NLI text pairs in 26 languages spoken by more
than 4 billion people. The dataset can be used to train models for multilingual
NLI (Natural Language Inference) or zero-shot classification. The dataset is
based on the English datasets MultiNLI, Fever-NLI, ANLI, LingNLI and WANLI and
was created using the latest open-source machine translation models.
"""

_HOMEPAGE = "https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7"

_LANGUAGES = ["ind", "vie"]

_LICENSE = Licenses.UNKNOWN.value

_LOCAL = False

_BASE_URL = "https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7/resolve/main/data/{file_name}"

_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # pairs

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class MultilingualNLI26LangDataset(datasets.GeneratorBasedBuilder):
"""NLI dataset in 26 languages, created using machine translation models"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

SUBSETS = ["anli", "fever", "ling", "mnli", "wanli"]

BUILDER_CONFIGS = []
for lang, subset in list(itertools.product(_LANGUAGES, SUBSETS)):
subset_id = f"{lang}_{subset}"
akhdanfadh marked this conversation as resolved.
Show resolved Hide resolved
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset_id}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} {subset_id} source schema",
schema="source",
subset_id=subset_id,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset_id}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {subset_id} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=subset_id,
),
]

DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_anli_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"premise_original": datasets.Value("string"),
"hypothesis_original": datasets.Value("string"),
"label": datasets.Value("int64"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = schemas.pairs_features(label_names=["entailment", "neutral", "contradiction"])

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
file_list = HfFileSystem().ls("datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7/data", detail=False)

subset_config = self.config.subset_id
if "ind" in subset_config:
subset_config = subset_config.replace("ind", "id")
if "vie" in subset_config:
subset_config = subset_config.replace("vie", "vi")

data_urls = []
for file_path in file_list:
file_name = file_path.split("/")[-1]
subset_id = file_name.split("-")[0]
if subset_id == subset_config:
if file_path.endswith(".parquet"):
url = _BASE_URL.format(file_name=file_name)
data_urls.append(url)

data_paths = list(map(Path, dl_manager.download_and_extract(data_urls)))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_paths": data_paths,
},
),
]

def _generate_examples(self, data_paths: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
key = 0
for data_path in data_paths:
df = pd.read_parquet(data_path)

for _, row in df.iterrows():
if self.config.schema == "source":
yield key, {
"premise_original": row["premise_original"],
"hypothesis_original": row["hypothesis_original"],
"label": row["label"],
"premise": row["premise"],
"hypothesis": row["hypothesis"],
}
key += 1
elif self.config.schema == _SEACROWD_SCHEMA:
yield key, {
"id": str(key),
"text_1": row["premise"],
"text_2": row["hypothesis"],
"label": row["label"],
}
key += 1