Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #25 | Create dataset loader for Typhoon Yolanda Tweets #56

Merged
merged 5 commits into from
Nov 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions seacrowd/sea_datasets/typhoon_yolanda_tweets/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@misc{imperial2019sentiment,
title={Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks},
author={Joseph Marvin Imperial and Jeyrome Orosco and Shiela Mae Mazo and Lany Maceda},
year={2019},
eprint={1908.01765},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
"""

_DATASETNAME = "typhoon_yolanda_tweets"

_DESCRIPTION = """\
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during,
and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three
sentiment categories: positive, negative, and neutral.
"""

_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Annotated%20Yolanda"

_LICENSE = Licenses.CC_BY_4_0.value

_ROOT_URL = "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/Tweets/Annotated%20Yolanda/"
_URLS = {"train": {-1: _ROOT_URL + "train/-1.txt", 0: _ROOT_URL + "train/0.txt", 1: _ROOT_URL + "train/1.txt"}, "test": {-1: _ROOT_URL + "test/-1.txt", 0: _ROOT_URL + "test/0.txt", 1: _ROOT_URL + "test/1.txt"}}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"

class TyphoonYolandaTweets(datasets.GeneratorBasedBuilder):
"""
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and
after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment
categories: positive, negative, and neutral.
"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name="typhoon_yolanda_tweets_source",
version=SOURCE_VERSION,
description="Typhoon Yolanda Tweets source schema",
schema="source",
subset_id="typhoon_yolanda_tweets",
),
SEACrowdConfig(
name="typhoon_yolanda_tweets_seacrowd_text",
version=SEACROWD_VERSION,
description="Typhoon Yolanda Tweets SEACrowd schema",
schema="seacrowd_text",
subset_id="typhoon_yolanda_tweets",
),
]

DEFAULT_CONFIG_NAME = "typhoon_yolanda_tweets_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["-1", "0", "1"])

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
emos = [-1, 0, 1]
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text":
train_path = dl_manager.download_and_extract({emo: _URLS["train"][emo] for emo in emos})

test_path = dl_manager.download_and_extract({emo: _URLS["test"][emo] for emo in emos})

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
"split": "test",
},
),
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema != "source" and self.config.schema != "seacrowd_text":
raise ValueError(f"Invalid config: {self.config.name}")

df = pd.DataFrame(columns=["text", "label"])

if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text":
for emo, file in filepath.items():
with open(file) as f:
t = f.readlines()
l = [str(emo)]*(len(t))
tmp_df = pd.DataFrame.from_dict({"text": t, "label": l})
df = pd.concat([df, tmp_df], ignore_index=True)

for row in df.itertuples():
ex = {"id": str(row.Index), "text": row.text, "label": row.label}
yield row.Index, ex