-
Notifications
You must be signed in to change notification settings - Fork 57
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closes #448 | Add/Update Dataloader alorese #541
Merged
Merged
Changes from 19 commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
c58865d
feat: dataloader for text2text MT
patrickamadeus 1c99845
nitpick: block sp2t to pass tc for t2t task
patrickamadeus aaba4fc
nitpick join
patrickamadeus 8fcffaf
Merge branch 'master' into alorese
patrickamadeus 7513b50
feat: support sptext, sptext_translated
patrickamadeus 81fde25
feat: final alorese_source code
patrickamadeus 8d7f639
chore: scrape entire URLs
patrickamadeus 069dcb5
nitpick
patrickamadeus 1094c1c
nitpick: config builder naming
patrickamadeus 6d227cd
fix: nitpick naming a bit
patrickamadeus b4a61c6
Merge remote-tracking branch 'upstream/master' into alorese
patrickamadeus 1bffd96
nitpick PR: formatting, abs import, invalid schema handler
patrickamadeus 874f856
docs: add docstring scraping approach
patrickamadeus a413ea5
Merge branch 'master' into alorese
patrickamadeus fa7f8b5
fix: add URL scrape timestamp, revise code formatting, citation
patrickamadeus f22e93b
nitpick year
patrickamadeus 7bfca50
nitpick review
patrickamadeus 2fa1a1e
Merge branch 'master' into alorese
patrickamadeus 4876bf8
fix: revise schema and remove subset
patrickamadeus bef5cb2
nitpick formatting
patrickamadeus 0677796
Update seacrowd/sea_datasets/alorese/alorese.py
patrickamadeus 118063a
Update alorese.py
sabilmakbar File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres | ||
ranging from Experiment or task, Stimuli, Discourse, and Written materials. | ||
""" | ||
import xml.etree.ElementTree as ET | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.sea_datasets.alorese.alorese_url import _URLS_DICT | ||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{Moro2018-ms, | ||
title = "The plural word hire in alorese: Contact-induced change from | ||
neighboring Alor-pantar languages", | ||
author = "Moro, Francesca R", | ||
journal = "Oceanic Linguistics", | ||
publisher = "University of Hawai'i Press", | ||
volume = 57, | ||
number = 1, | ||
pages = "177--198", | ||
year = 2018, | ||
language = "en" | ||
} | ||
""" | ||
|
||
_DATASETNAME = "alorese" | ||
_DESCRIPTION = """\ | ||
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres | ||
ranging from Experiment or task, Stimuli, Discourse, and Written materials. | ||
""" | ||
_HOMEPAGE = "https://hdl.handle.net/1839/e10d7de5-0a6d-4926-967b-0a8cc6d21fb1" | ||
_LANGUAGES = ["aol", "ind"] | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_LOCAL = False | ||
|
||
_URLS = _URLS_DICT | ||
|
||
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.MACHINE_TRANSLATION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class AloreseDataset(datasets.GeneratorBasedBuilder): | ||
"""Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres ranging | ||
from Experiment or task, Stimuli, Discourse, and Written materials.""" | ||
|
||
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}",)] + [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_t2t", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd for text2text schema", | ||
schema="seacrowd_t2t", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_sptext", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd for sptext schema", | ||
schema="seacrowd_sptext", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"nr": datasets.Value("int64"), | ||
"media_id": datasets.Value("string"), | ||
"speaker_id": datasets.Value("string"), | ||
"audio": datasets.Audio(sampling_rate=16000), | ||
"annotation_aol": datasets.Value("string"), | ||
"annotation_ind": datasets.Value("string"), | ||
"begin_time": datasets.Value("int64"), | ||
"end_time": datasets.Value("int64"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_sptext": | ||
features = schemas.speech_text_features | ||
|
||
elif self.config.schema == "seacrowd_t2t": | ||
features = schemas.text2text_features | ||
|
||
patrickamadeus marked this conversation as resolved.
Show resolved
Hide resolved
|
||
else: | ||
raise ValueError(f"Invalid config schema: {self.config.schema}") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
|
||
if self.config.schema == "seacrowd_t2t": | ||
filepath = {k: v["text_path"] for k, v in _URLS.items()} | ||
paths = dl_manager.download(filepath) | ||
else: | ||
paths = dl_manager.download(_URLS) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": paths, | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath) -> Tuple[int, Dict]: | ||
|
||
if self.config.schema == "source": | ||
source_df = self._get_source_df(filepath) | ||
|
||
for k, row in source_df.iterrows(): | ||
yield k, { | ||
"nr": k + 1, | ||
"media_id": row["media_id"], | ||
"speaker_id": row["speaker_id"], | ||
"audio": row["audio_path"], | ||
"annotation_aol": row["annotation_aol"], | ||
"annotation_ind": row["annotation_ind"], | ||
"begin_time": row["begin_time"], | ||
"end_time": row["end_time"], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_t2t": | ||
caption_df = self._merge_text_dfs(filepath) | ||
|
||
for k, row in caption_df.iterrows(): | ||
yield k, { | ||
"id": k + 1, | ||
"text_1": row["annotation_aol"], | ||
"text_2": row["annotation_ind"], | ||
"text_1_name": _LANGUAGES[0], | ||
"text_2_name": _LANGUAGES[1], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_sptext": | ||
sptext_df = self._get_sptext_df(filepath) | ||
|
||
for k, row in sptext_df.iterrows(): | ||
yield k, {"id": k + 1, "path": row["audio_path"], "audio": row["audio_path"], "text": row["annotation_aol"], "speaker_id": row["speaker_id"], "metadata": {"speaker_age": None, "speaker_gender": None}} | ||
|
||
def _get_time_df(self, xml_tree) -> pd.DataFrame: | ||
time_slot_values = [(time_slot.attrib["TIME_SLOT_ID"], int(time_slot.attrib["TIME_VALUE"])) for time_slot in xml_tree.iter(tag="TIME_SLOT")] | ||
|
||
return pd.DataFrame({"time_slot_id": [v[0] for v in time_slot_values], "time_value": [v[1] for v in time_slot_values]}) | ||
|
||
def _get_aol_annotations(self, xml_tree) -> pd.DataFrame: | ||
aol_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["TIME_SLOT_REF1"], annotation.attrib["TIME_SLOT_REF2"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="ALIGNABLE_ANNOTATION")] | ||
|
||
return pd.DataFrame({"annotation_id": [v[0] for v in aol_annotations], "time_slot_ref1": [v[1] for v in aol_annotations], "time_slot_ref2": [v[2] for v in aol_annotations], "annotation_value": [v[3] for v in aol_annotations]}) | ||
|
||
def _get_ind_annotations(self, xml_tree) -> pd.DataFrame: | ||
ind_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["ANNOTATION_REF"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="REF_ANNOTATION")] | ||
|
||
return pd.DataFrame({"annotation_id": [v[0] for v in ind_annotations], "annotation_ref_id": [v[1] for v in ind_annotations], "annotation_value": [v[2] for v in ind_annotations]}) | ||
|
||
def _get_text_df(self, xml_tree) -> pd.DataFrame: | ||
time_df = self._get_time_df(xml_tree) | ||
aol_df = self._get_aol_annotations(xml_tree) | ||
ind_df = self._get_ind_annotations(xml_tree) | ||
|
||
df1 = aol_df.merge(time_df, left_on="time_slot_ref1", right_on="time_slot_id", how="left").rename(columns={"time_value": "begin_time", "annotation_value": "annotation_aol"}).drop(columns=["time_slot_ref1", "time_slot_id"]) | ||
df2 = df1.merge(time_df, left_on="time_slot_ref2", right_on="time_slot_id", how="left").rename(columns={"time_value": "end_time"}).drop(columns=["time_slot_ref2", "time_slot_id"]) | ||
final_df = df2.merge(ind_df, left_on="annotation_id", right_on="annotation_ref_id", how="left").rename(columns={"annotation_value": "annotation_ind"}).drop(columns=["annotation_ref_id", "annotation_id_y", "annotation_id_x"]) | ||
|
||
return final_df[["annotation_aol", "annotation_ind", "begin_time", "end_time"]] | ||
|
||
def _merge_text_dfs(self, xml_dict) -> pd.DataFrame: | ||
final_df = pd.DataFrame() | ||
len_tracker = [] | ||
media_ids = [] | ||
|
||
xml_trees = [ET.parse(xml_path) for xml_path in xml_dict.values()] | ||
for xml_tree in xml_trees: | ||
cur_df = self._get_text_df(xml_tree) | ||
final_df = pd.concat([final_df, cur_df], axis=0) | ||
len_tracker.append(len(cur_df)) | ||
|
||
media_id_list = list(xml_dict.keys()) | ||
for i in range(len(len_tracker)): | ||
media_ids.extend([media_id_list[i]] * len_tracker[i]) | ||
|
||
final_df["media_id"] = media_ids | ||
|
||
return final_df.reset_index() | ||
|
||
def _groupby_caption_by_media_ids(self, caption_df: pd.DataFrame) -> pd.DataFrame: | ||
caption_df = ( | ||
caption_df.groupby("media_id") | ||
.agg({"annotation_aol": lambda x: " ".join([value if value is not None else "<NONE>" for value in x]), "annotation_ind": lambda x: " ".join([value if value is not None else "<NONE>" for value in x])}) | ||
patrickamadeus marked this conversation as resolved.
Show resolved
Hide resolved
|
||
.reset_index() | ||
) | ||
return caption_df | ||
|
||
def _get_sptext_df(self, complete_dict) -> pd.DataFrame: | ||
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()} | ||
|
||
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]}) | ||
caption_df = self._groupby_caption_by_media_ids(self._merge_text_dfs(xml_dict)) | ||
|
||
df = caption_df.merge(audio_df, on="media_id", how="inner") | ||
|
||
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind"]] | ||
|
||
def _get_source_df(self, complete_dict) -> pd.DataFrame: | ||
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()} | ||
|
||
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]}) | ||
text_df = self._merge_text_dfs(xml_dict) | ||
|
||
df = text_df.merge(audio_df, on="media_id", how="inner") | ||
|
||
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind", "begin_time", "end_time"]] |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can we fix this formatting? :D
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
bueno @sabilmakbar ! it's done, sorry I forgot to delete the old
]
bracket