Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #51 | Add id_sentiment_analysis dataloader #455

Merged
merged 10 commits into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
160 changes: 160 additions & 0 deletions seacrowd/sea_datasets/id_sentiment_analysis/id_sentiment_analysis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = """\
@misc{ridife2019idsa,
author = {Fe, Ridi},
title = {Indonesia Sentiment Analysis Dataset},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/ridife/dataset-idsa}}
}
"""

_DATASETNAME = "id_sentiment_analysis"

_DESCRIPTION = """\
This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019.
This dataset was developed in Cloud Experience Research Group, Gadjah Mada University.
There is no further explanation of the dataset. Contributor found this dataset after skimming through "Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy" (Lin CH and Nuha U, 2023).
"""

_HOMEPAGE = "https://ridi.staff.ugm.ac.id/2019/03/06/indonesia-sentiment-analysis-dataset/"

_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_LICENSE = Licenses.UNKNOWN.value

_LOCAL = False

_URLS = {
_DATASETNAME: "https://raw.githubusercontent.com/ridife/dataset-idsa/master/Indonesian%20Sentiment%20Twitter%20Dataset%20Labeled.csv",
}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class IdSentimentAnalysis(datasets.GeneratorBasedBuilder):
"""This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
]

seacrowd_schema_config: List[SEACrowdConfig] = []

for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS:

seacrowd_schema_config.append(
SEACrowdConfig(
name=f"{_DATASETNAME}_{seacrowd_schema}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {seacrowd_schema} schema",
schema=f"{seacrowd_schema}",
subset_id=f"{_DATASETNAME}",
)
)

BUILDER_CONFIGS.extend(seacrowd_schema_config)

DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

def _info(self) -> datasets.DatasetInfo:

if self.config.schema == "source":
features = datasets.Features(
{
"sentimen": datasets.Value("int32"),
"tweet": datasets.Value("string"),
}
)

elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}":
features = schemas.text_features(label_names=[1, -1, 0])

else:
raise ValueError(f"Invalid config: {self.config.name}")

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""

path = dl_manager.download_and_extract(_URLS[_DATASETNAME])

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path": path,
},
),
]

def _generate_examples(self, path: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""

idx = 0

if self.config.schema == "source":
df = pd.read_csv(path, delimiter="\t")

for _, row in df.iterrows():
yield idx, row.to_dict()
idx += 1

elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}":
df = pd.read_csv(path, delimiter="\t")

df["id"] = df.index
df.rename(columns={"sentimen": "label"}, inplace=True)
df.rename(columns={"Tweet": "text"}, inplace=True)
Enliven26 marked this conversation as resolved.
Show resolved Hide resolved

for _, row in df.iterrows():
yield idx, row.to_dict()
idx += 1

else:
raise ValueError(f"Invalid config: {self.config.name}")