Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #192 | Create dataset loader for MALINDO_parallel #385

Merged
merged 5 commits into from
Apr 1, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
181 changes: 181 additions & 0 deletions seacrowd/sea_datasets/malindo_parallel/malindo_parallel.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This template serves as a starting point for contributing a dataset to the SEACrowd Datahub repo.


Full documentation on writing dataset loading scripts can be found here:
https://huggingface.co/docs/datasets/add_dataset.html

To create a dataset loading script you will create a class and implement 3 methods:
* `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object.
* `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split.
* `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`.

"""
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)

_CITATION = """\
@misc{MALINDO-parallel,
title = "MALINDO-parallel",
howpublished = "https://github.com/matbahasa/MALINDO_Parallel/blob/master/README.md",
note = "Accessed: 2023-01-27",
}
"""

_DATASETNAME = "malindo_parallel"


_DESCRIPTION = """\
Teks ini adalah skrip video untuk Kampus Terbuka Universiti Bahasa Asing Tokyo pada tahun 2020. Tersedia parallel sentences dalam Bahasa Melayu/Indonesia dan Bahasa Jepang
"""


_HOMEPAGE = "https://github.com/matbahasa/MALINDO_Parallel/tree/master/OpenCampusTUFS"


_LANGUAGES = ["zlm", "jpn"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)


_LICENSE = "Creative Commons Attribution 4.0 (cc-by-4.0)"


_LOCAL = False


_URLS = {
_DATASETNAME: "https://github.com/matbahasa/MALINDO_Parallel/blob/master/OpenCampusTUFS/OCTUFS2020.txt",
}


_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]


_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"



class MalindoParallelDataset(datasets.GeneratorBasedBuilder):
"""Data terjemahan bahasa Melayu/Indonesia"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)


BUILDER_CONFIGS = [
SEACrowdConfig(
name="malindo_parallel_source",
version=SOURCE_VERSION,
description="malindo_parallel source schema",
schema="source",
subset_id="malindo_parallel",
),
SEACrowdConfig(
name="malindo_parallel_seacrowd_t2t",
version=SEACROWD_VERSION,
description="malindo_parallel SEACrowd schema",
schema="seacrowd_t2t",
subset_id="malindo_parallel",
),
]

DEFAULT_CONFIG_NAME = "malindo_parallel_source"

def _info(self) -> datasets.DatasetInfo:

if self.config.schema == "source":
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")})

elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""

urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,

gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:


data = json.load(open(filepath, "r"))

rows = data["payload"]["blob"]["rawLines"]

if self.config.schema == "source":

for i, row in enumerate(rows):
t1idx = row.find("\t") + 1
t2idx = row[t1idx:].find("\t")
row_id = row[:t1idx]
row_melayu = row[t1idx : t1idx + t2idx]
row_japanese = row[t1idx + t2idx + 1 : -1]
ex = {"id": i, "text": row_melayu + "\t" + row_japanese}
yield i, ex

elif self.config.schema == "seacrowd_t2t":


for i, row in enumerate(rows):
t1idx = row.find("\t") + 1
t2idx = row[t1idx:].find("\t")
row_id = row[:t1idx]
row_melayu = row[t1idx : t1idx + t2idx]
row_japanese = row[t1idx + t2idx + 1 : -1]
ex = {
"id": i,
"text_1": row_melayu,
"text_2": row_japanese,
"text_1_name": "zlm",
"text_2_name": "jpn",
}
yield i, ex



if __name__ == "__main__":
datasets.load_dataset(__file__)