Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #16 | Create dataset loader for ALT Burmese Treebank #296

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
151 changes: 151 additions & 0 deletions seacrowd/sea_datasets/alt_burmese_treebank/alt_burmese_treebank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.sea_datasets.alt_burmese_treebank.utils.alt_burmese_treebank_utils import extract_data
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{
10.1145/3373268,
author = {Ding, Chenchen and Yee, Sann Su Su and Pa, Win Pa and Soe, Khin Mar and Utiyama, Masao and Sumita, Eiichiro},
title = {A Burmese (Myanmar) Treebank: Guideline and Analysis},
year = {2020},
issue_date = {May 2020},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {19},
number = {3},
issn = {2375-4699},
url = {https://doi.org/10.1145/3373268},
doi = {10.1145/3373268},
abstract = {A 20,000-sentence Burmese (Myanmar) treebank on news articles has been released under a CC BY-NC-SA license.\
Complete phrase structure annotation was developed for each sentence from the morphologically annotated data\
prepared in previous work of Ding et al. [1]. As the final result of the Burmese component in the Asian\
Language Treebank Project, this is the first large-scale, open-access treebank for the Burmese language.\
The annotation details and features of this treebank are presented.\
},
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
month = {jan},
articleno = {40},
numpages = {13},
keywords = {Burmese (Myanmar), phrase structure, treebank}
}
"""

_DATASETNAME = "alt_burmese_treebank"

_DESCRIPTION = """\
A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\
open-access treebank for the Burmese language.
"""

_HOMEPAGE = "https://zenodo.org/records/3463010"

_LANGUAGES = ["mya"]

_LICENSE = Licenses.CC_BY_NC_SA_4_0.value

_LOCAL = False

_URLS = {
_DATASETNAME: "https://zenodo.org/records/3463010/files/my-alt-190530.zip?download=1",
}

_SUPPORTED_TASKS = [Tasks.CONSTITUENCY_PARSING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class AltBurmeseTreebank(datasets.GeneratorBasedBuilder):
"""A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\
open-access treebank for the Burmese language."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_tree",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_tree",
subset_id=f"{_DATASETNAME}",
),
]

DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

def _info(self) -> datasets.DatasetInfo:

if self.config.schema == "source":
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")})
elif self.config.schema == "seacrowd_tree":
features = schemas.tree_features

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "my-alt-190530/data"),
"split": "train",
},
),
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""

if self.config.schema == "source":
with open(filepath, "r") as f:
for idx, line in enumerate(f):
example = {"id": line.split("\t")[0], "text": line.split("\t")[1]}
yield idx, example

elif self.config.schema == "seacrowd_tree":
with open(filepath, "r") as f:
for idx, line in enumerate(f):
example = extract_data(line)
yield idx, example
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import re


def extract_parts(input_string):
parts = []
stack = []
current_part = ""

for char in input_string:
if char == "(":
stack.append("(")
elif char == ")":
if stack:
stack.pop()
if not stack:
parts.append(current_part[1:].strip())
current_part = ""
else:
parts.append(current_part[1:].strip())
current_part = ""
if stack:
current_part += char

return parts


def extract_sentence(input_string):
innermost_pattern = re.compile(r"\(([^()]+)\)")
innermost_matches = re.findall(innermost_pattern, input_string)
extracted_sentence = " ".join(match.split()[1] for match in innermost_matches)
if len(extracted_sentence) == 0:
extracted_sentence = " ".join(input_string.split()[1:])
return extracted_sentence


def extract_data(sentence):
nodes = []
sub_nodes = {}
sub_node_ids = []
id_pattern = re.compile(r"SNT\.\d+\.\d+")

# Extract id, sub_nodes and text of ROOT
sentence_id = id_pattern.search(sentence).group()
root_sent = sentence[sentence.find("ROOT") : -1]
root_subnodes = extract_parts(root_sent)
sub_nodes.update({i + 1: root_subnodes[i] for i in range(len(root_subnodes))})
sub_node_ids.extend([i + 1 for i in range(len(root_subnodes))])
root_text = extract_sentence(root_sent)

nodes.append({"id": "0", "type": "ROOT", "text": root_text, "offsets": [0, len(root_text) - 1], "subnodes": [f"{len(nodes)+i+1}" for i in range(len(sub_nodes))]})

while sub_node_ids:
sub_node_id = sub_node_ids.pop(0)
text = extract_sentence(sub_nodes[sub_node_id])

cur_subnodes = extract_parts(sub_nodes[sub_node_id])

if len(cur_subnodes) > 0:
id_to_add = sub_node_ids[-1] if len(sub_node_ids) > 0 else sub_node_id
cur_subnode_ids = [id_to_add + i + 1 for i in range(len(cur_subnodes))]
sub_nodes.update({id_to_add + i + 1: cur_subnodes[i] for i in range(len(cur_subnodes))})
sub_node_ids.extend(cur_subnode_ids)
else:
cur_subnode_ids = []

node_type = sub_nodes[sub_node_id].split(" ")[0]
start = root_text.find(text)
end = start + len(text) - 1

nodes.append({"id": f"{sub_node_id}", "type": node_type, "text": text, "offsets": [start, end], "subnodes": [f"{i}" for i in cur_subnode_ids]})
return {"id": sentence_id, "passage": {"id": sentence_id, "type": None, "text": [nodes[0]["text"]], "offsets": nodes[0]["offsets"]}, "nodes": nodes}
6 changes: 6 additions & 0 deletions seacrowd/utils/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from seacrowd.utils.schemas import (
image_text_features,
kb_features,
tree_features,
pairs_features,
pairs_features_score,
pairs_multi_features,
Expand Down Expand Up @@ -45,6 +46,9 @@ class Tasks(Enum):
COREFERENCE_RESOLUTION = "COREF"
SPAN_BASED_ABSA = "SPAN_ABSA"

# Tree
CONSTITUENCY_PARSING = "CONST_PAR"

# Single Text Classification
ASPECT_BASED_SENTIMENT_ANALYSIS = "ABSA"
EMOTION_CLASSIFICATION = "EC"
Expand Down Expand Up @@ -202,6 +206,7 @@ class Licenses(Enum):

TASK_TO_SCHEMA = {
Tasks.DEPENDENCY_PARSING: "KB",
Tasks.CONSTITUENCY_PARSING: "TREE",
Tasks.WORD_SENSE_DISAMBIGUATION: "T2T",
Tasks.WORD_ANALOGY: "T2T",
Tasks.KEYWORD_EXTRACTION: "SEQ_LABEL",
Expand Down Expand Up @@ -268,6 +273,7 @@ class Licenses(Enum):

SCHEMA_TO_FEATURES = {
"KB": kb_features,
"TREE": tree_features,
"QA": qa_features,
"T2T": text2text_features,
"TEXT": text_features(),
Expand Down
35 changes: 35 additions & 0 deletions seacrowd/utils/schemas/tree.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
"""
Tree Schema

This schema assumes a document with subnodes elements
and a tree hierarchy.

For example:
NODE1 .....
//
ROOT - NODE2 .....
\\
NODE3 .....
"""
import datasets

features = datasets.Features(
{
"id": datasets.Value("string"),
"passage": {
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence(datasets.Value("int32")),
},
"nodes": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": datasets.Sequence(datasets.Value("int32")),
"subnodes": datasets.Sequence(datasets.Value("string")), # ids of subnodes
}
],
}
)