Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #5 | Add tatoeba dataset loader #22

Merged
merged 8 commits into from
Nov 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
184 changes: 184 additions & 0 deletions seacrowd/sea_datasets/tatoeba/tatoeba.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{tatoeba,
title = {Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond},
author = {Mikel, Artetxe and Holger, Schwenk,},
journal = {arXiv:1812.10464v2},
year = {2018}
}
"""

_LOCAL = False
_LANGUAGES = ["ind", "vie", "tgl", "jav", "tha"]
_DATASETNAME = "tatoeba"
_DESCRIPTION = """\
This dataset is a subset of the Tatoeba corpus containing language pairs for Indonesian, Vietnamese, Tagalog, Javanese, and Thai.
The original dataset description can be found below:

This data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
"""

_HOMEPAGE = "https://github.com/facebookresearch/LASER/blob/main/data/tatoeba/v1/README.md"
_LICENSE = Licenses.APACHE_2_0.value
_URL = "https://github.com/facebookresearch/LASER/raw/main/data/tatoeba/v1/"

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "1.0.0"


class TatoebaDataset(datasets.GeneratorBasedBuilder):
"""Tatoeba subset for Indonesian, Vietnamese, Tagalog, Javanese, and Thai."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

SEACROWD_SCHEMA_NAME = "t2t"

# Add configurations for loading a dataset per language.
dataset_names = sorted([f"tatoeba_{lang}" for lang in _LANGUAGES])
BUILDER_CONFIGS = []
for name in dataset_names:
source_config = SEACrowdConfig(
name=f"{name}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=name,
)
BUILDER_CONFIGS.append(source_config)
seacrowd_config = SEACrowdConfig(
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=name,
)
BUILDER_CONFIGS.append(seacrowd_config)

# Add configuration that allows loading all datasets at once.
BUILDER_CONFIGS.extend(
[
# tatoeba_source
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema (all)",
schema="source",
subset_id=_DATASETNAME,
),
# tatoeba_seacrowd_t2t
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema (all)",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=_DATASETNAME,
),
]
)

# Choose first language as default
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"source_sentence": datasets.Value("string"),
"target_sentence": datasets.Value("string"),
"source_lang": datasets.Value("string"),
"target_lang": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
"""Return SplitGenerators."""
languages = []
tatoeba_source_data = []
tatoeba_eng_data = []

lang = self.config.name.split("_")[1]
if lang in _LANGUAGES:
# Load data per language
tatoeba_source_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang}"))
tatoeba_eng_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.eng"))
languages.append(lang)
else:
# Load examples from all languages at once
# We just want to run this part when tatoeba_source / tatoeba_seacrowd_t2t was chosen.
for lang in _LANGUAGES:
tatoeba_source_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.{lang}"))
tatoeba_eng_data.append(dl_manager.download_and_extract(_URL + f"tatoeba.{lang}-eng.eng"))
languages.append(lang)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": (tatoeba_source_data, tatoeba_eng_data),
"split": "dev",
"languages": languages,
},
)
]

def _generate_examples(self, filepaths: Tuple[List[Path], List[Path]], split: str, languages: List[str]) -> Tuple[int, Dict]:
"""Yield examples as (key, example) tuples"""
source_files, target_files = filepaths
source_sents = []
target_sents = []
source_langs = []

for source_file, target_file, lang in zip(source_files, target_files, languages):
with open(source_file, encoding="utf-8") as f1:
for row in f1:
source_sents.append(row.strip())
source_langs.append(lang)
with open(target_file, encoding="utf-8") as f2:
for row in f2:
target_sents.append(row.strip())

for idx, (source, target, lang) in enumerate(zip(source_sents, target_sents, source_langs)):
if self.config.schema == "source":
example = {
"source_sentence": source,
"target_sentence": target,
# The source_lang in the HuggingFace source seems incorrect
# I am overriding it with the actual language code.
"source_lang": lang,
"target_lang": "eng",
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": str(idx),
"text_1": source,
"text_2": target,
# The source_lang in the HuggingFace source seems incorrect
# I am overriding it with the actual language code.
"text_1_name": lang,
"text_2_name": "eng",
}
yield idx, example