-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* Create dataset loader for MKQA #34 * Refactor class variables _LANGUAGES to global for MKQA #34 * Filter supported languages (SEA only) of seacrowd_qa schema for MKQA #34 * Filter supported languages (SEA only) of source schema for MKQA #34 * Filter supported languages (SEA only) for MKQA #34 (a leftover) * Change language code from macrolanguage, msa to zlm, for MKQA #34 * Change to a more appropriate language code of for Malaysian variant used in MKQA #34 * Changed the value of field 'type' of QA schema to be more general, and moved the more specific value to 'meta' field for MKQA #34 * Replace None value to empty array in 'answer_aliases' sub-field for consistency in MKQA #34
- Loading branch information
Showing
2 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{longpre-etal-2021-mkqa, | ||
title = "{MKQA}: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering", | ||
author = "Longpre, Shayne and | ||
Lu, Yi and | ||
Daiber, Joachim", | ||
editor = "Roark, Brian and | ||
Nenkova, Ani", | ||
journal = "Transactions of the Association for Computational Linguistics", | ||
volume = "9", | ||
year = "2021", | ||
address = "Cambridge, MA", | ||
publisher = "MIT Press", | ||
url = "https://aclanthology.org/2021.tacl-1.82", | ||
doi = "10.1162/tacl_a_00433", | ||
pages = "1389--1406", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "mkqa" | ||
|
||
_DESCRIPTION = """\ | ||
Multilingual Knowledge Questions and Answers (MKQA), an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total) | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/apple/ml-mkqa" | ||
|
||
_LICENSE = Licenses.CC_BY_SA_3_0.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
_DATASETNAME: "https://github.com/apple/ml-mkqa/raw/main/dataset/mkqa.jsonl.gz", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
_LANGUAGES = [ | ||
"khm", | ||
"zsm", | ||
"tha", | ||
"vie", | ||
] # follows the convention of 3-letter code as suggested since NusaCrowd. | ||
|
||
|
||
class MKQADataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs | ||
aligned across 26 typologically diverse languages (260k question-answer pairs in total). | ||
The goal of this dataset is to provide a challenging benchmark for question answering quality | ||
across a wide set of languages. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
_ANS_TYPES = [ | ||
"binary", | ||
"date", | ||
"entity", | ||
"long_answer", | ||
"number", | ||
"number_with_unit", | ||
"short_phrase", | ||
"unanswerable", | ||
] | ||
|
||
_SOURCE_LANGUAGES = [ | ||
"km", | ||
"ms", | ||
"th", | ||
"vi", | ||
# Filtered out: | ||
# "ar", "da", "de", "en", "es", "fi", "fr", "he", "hu", "it", "ja", "ko", | ||
# "nl", "no", "pl", "pt", "ru", "sv", "tr", "zh_cn", "zh_hk", "zh_tw", | ||
] | ||
|
||
_LANG_3TO2 = { | ||
"khm": "km", | ||
"zsm": "ms", | ||
"tha": "th", | ||
"vie": "vi", | ||
} | ||
|
||
BUILDER_CONFIGS = [ | ||
*[ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset_lang}{'_' if subset_lang else ''}source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_{subset_lang}", | ||
) | ||
for subset_lang in ["", *_LANGUAGES] | ||
], | ||
*[ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset_lang}{'_' if subset_lang else ''}seacrowd_qa", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_qa", | ||
subset_id=f"{_DATASETNAME}_{subset_lang}", | ||
) | ||
for subset_lang in ["", *_LANGUAGES] | ||
], | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
lang = self.config.subset_id.rsplit("_", 1)[-1] | ||
lang = self._LANG_3TO2.get(lang, lang) | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"query": datasets.Value("string"), | ||
"answers": { | ||
cur_lang: [ | ||
{ | ||
"type": datasets.ClassLabel(names=self._ANS_TYPES), | ||
"entity": datasets.Value("string"), | ||
"text": datasets.Value("string"), | ||
"aliases": [datasets.Value("string")], | ||
} | ||
] | ||
for cur_lang in ([lang] if lang else self._SOURCE_LANGUAGES) | ||
}, | ||
"queries": {cur_lang: datasets.Value("string") for cur_lang in ([lang] if lang else self._SOURCE_LANGUAGES)}, | ||
"example_id": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_qa": | ||
features = schemas.qa_features | ||
features["meta"]["answer_entity"] = datasets.Sequence(datasets.Value("string")) | ||
features["meta"]["answer_aliases"] = datasets.Sequence(datasets.Sequence(datasets.Value("string"))) | ||
features["meta"]["answer_type"] = datasets.Sequence(datasets.ClassLabel(names=self._ANS_TYPES)) | ||
|
||
else: # schema not found! should NOT reach here ... | ||
raise NotImplementedError() | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
urls = _URLS[_DATASETNAME] | ||
data_path = dl_manager.download_and_extract(urls) | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": data_path}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
lang = self.config.subset_id.rsplit("_", 1)[-1] | ||
lang = self._LANG_3TO2.get(lang, lang) | ||
|
||
datas = [] | ||
with open(filepath, "r", encoding="utf8") as ipt: | ||
for cur in map(json.loads, ipt): | ||
cur["example_id"] = str(cur["example_id"]) | ||
for key in ["answers", "queries"]: | ||
cur[key] = {k: v for k, v in cur[key].items() if k in ([lang] if lang else self._SOURCE_LANGUAGES)} | ||
datas.append(cur) | ||
|
||
if self.config.schema == "source": | ||
for cur in datas: | ||
for anslist in cur["answers"].values(): | ||
for ans in anslist: | ||
ans.setdefault("entity", "") | ||
ans.setdefault("aliases", []) | ||
yield int(cur["example_id"]), cur | ||
|
||
elif self.config.schema == "seacrowd_qa": | ||
for cur in datas: | ||
for cur_lang in [lang] if lang else map(lambda k: self._LANG_3TO2.get(k, k), _LANGUAGES): | ||
ret = { | ||
"id": f'{cur["example_id"]}_{cur_lang}', | ||
"question_id": cur["example_id"], | ||
"document_id": "", | ||
"question": cur["queries"][cur_lang], | ||
"type": "open_domain", | ||
"choices": [], | ||
"context": "", | ||
"answer": [ans.get("text", None) for ans in cur["answers"][cur_lang]], | ||
"meta": {f"answer_{k}": [ans.get(k, None) for ans in cur["answers"][cur_lang]] for k in ["entity", "aliases", "type"]}, | ||
} | ||
ret["meta"]["answer_aliases"] = list(map(lambda a: [] if a is None else a, ret["meta"]["answer_aliases"])) | ||
yield ret["id"], ret |