-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* feat: jailbreak dataloader * fix: minor errors * refactor: styling * refactor: remove main entry * refactor: class name * refactor: remove unused loop * fix: separate text column into different subsets * Create __init__.py
- Loading branch information
Showing
2 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from dataclasses import dataclass | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@misc{deng2023multilingual, | ||
title={Multilingual Jailbreak Challenges in Large Language Models}, | ||
author={Yue Deng and Wenxuan Zhang and Sinno Jialin Pan and Lidong Bing}, | ||
year={2023}, | ||
eprint={2310.06474}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.CL} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "xl_jailbreak" | ||
|
||
_DESCRIPTION = """\ | ||
This dataset contains the data for the paper "Multilingual Jailbreak Challenges in Large Language Models". | ||
""" | ||
|
||
_HOMEPAGE = "https://huggingface.co/datasets/DAMO-NLP-SG/MultiJail" | ||
|
||
_LANGUAGES = ["jav", "vie", "tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) | ||
|
||
_LICENSE = Licenses.MIT.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
_DATASETNAME: {"train": "https://huggingface.co/api/datasets/DAMO-NLP-SG/MultiJail/parquet/default/train/0.parquet"}, | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.PROMPTING] | ||
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
_LANGUAGE_TO_COLUMN = { | ||
"vie": "vi", | ||
"tha": "th", | ||
"jav": "jv", | ||
} | ||
|
||
|
||
@dataclass | ||
class XlJailbreakSeacrowdConfig(SEACrowdConfig): | ||
"""BuilderConfig for Nusantara.""" | ||
|
||
language: str = None | ||
|
||
|
||
class XlJailbreak(datasets.GeneratorBasedBuilder): | ||
"""This dataset contains the data for the paper "Multilingual Jailbreak Challenges in Large Language Models".""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [] | ||
|
||
for language in _LANGUAGES: | ||
subset_id = language | ||
|
||
BUILDER_CONFIGS.append( | ||
XlJailbreakSeacrowdConfig( | ||
name=f"{subset_id}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} {language} schema", | ||
schema="source", | ||
subset_id=subset_id, | ||
language=language, | ||
) | ||
) | ||
|
||
seacrowd_schema_config: list[SEACrowdConfig] = [] | ||
|
||
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS: | ||
for language in _LANGUAGES: | ||
subset_id = language | ||
|
||
seacrowd_schema_config.append( | ||
XlJailbreakSeacrowdConfig( | ||
name=f"{subset_id}_{seacrowd_schema}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} {seacrowd_schema} schema", | ||
schema=f"{seacrowd_schema}", | ||
subset_id=subset_id, | ||
language=language, | ||
) | ||
) | ||
|
||
BUILDER_CONFIGS.extend(seacrowd_schema_config) | ||
|
||
DEFAULT_CONFIG_NAME = f"{_LANGUAGES[0]}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value(dtype="int64"), | ||
"source": datasets.Value(dtype="string"), | ||
"tags": datasets.Value(dtype="string"), | ||
"en": datasets.Value(dtype="string"), | ||
"zh": datasets.Value(dtype="string"), | ||
"it": datasets.Value(dtype="string"), | ||
"vi": datasets.Value(dtype="string"), | ||
"ar": datasets.Value(dtype="string"), | ||
"ko": datasets.Value(dtype="string"), | ||
"th": datasets.Value(dtype="string"), | ||
"bn": datasets.Value(dtype="string"), | ||
"sw": datasets.Value(dtype="string"), | ||
"jv": datasets.Value(dtype="string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.PROMPTING]).lower()}": | ||
features = schemas.ssp_features | ||
|
||
else: | ||
raise ValueError(f"Invalid config: {self.config.name}") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
urls = _URLS[_DATASETNAME] | ||
train_path = dl_manager.download_and_extract(urls["train"]) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": train_path, | ||
"split": "train", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
if self.config.schema == "source": | ||
|
||
df = pd.read_parquet(filepath) | ||
|
||
for index, row in df.iterrows(): | ||
yield index, row.to_dict() | ||
|
||
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.PROMPTING]).lower()}": | ||
df = pd.read_parquet(filepath) | ||
|
||
# Apply the function to each row and create a new column with the JSON string | ||
df["text"] = df[_LANGUAGE_TO_COLUMN[self.config.language]] | ||
|
||
df = df[["id", "text"]] | ||
|
||
print(df) | ||
|
||
for index, row in df.iterrows(): | ||
yield index, row.to_dict() | ||
|
||
else: | ||
raise ValueError(f"Invalid config: {self.config.name}") |