-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9098e9c
commit bb4579e
Showing
2 changed files
with
210 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Tasks, Licenses, TASK_TO_SCHEMA, SCHEMA_TO_FEATURES | ||
|
||
_CITATION = """\ | ||
@inproceedings{changpinyo-etal-2023-maxm, | ||
title = "{M}a{XM}: Towards Multilingual Visual Question Answering", | ||
author = "Changpinyo, Soravit and | ||
Xue, Linting and | ||
Yarom, Michal and | ||
Thapliyal, Ashish and | ||
Szpektor, Idan and | ||
Amelot, Julien and | ||
Chen, Xi and | ||
Soricut, Radu", | ||
editor = "Bouamor, Houda and | ||
Pino, Juan and | ||
Bali, Kalika", | ||
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023", | ||
month = dec, | ||
year = "2023", | ||
address = "Singapore", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2023.findings-emnlp.176", | ||
doi = "10.18653/v1/2023.findings-emnlp.176", | ||
pages = "2667--2682", | ||
abstract = "Visual Question Answering (VQA) has been primarily studied | ||
through the lens of the English language. Yet, tackling VQA in other | ||
languages in the same manner would require a considerable amount of | ||
resources. In this paper, we propose scalable solutions to multilingual | ||
visual question answering (mVQA), on both data and modeling fronts. We first | ||
propose a translation-based framework to mVQA data generation that requires | ||
much less human annotation efforts than the conventional approach of | ||
directly collection questions and answers. Then, we apply our framework to | ||
the multilingual captions in the Crossmodal-3600 dataset and develop an | ||
efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 | ||
diverse languages. Finally, we develop a simple, lightweight, and effective | ||
approach as well as benchmark state-of-the-art English and multilingual VQA | ||
models. We hope that our benchmark encourages further research on mVQA.", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "maxm" | ||
|
||
_DESCRIPTION = """\ | ||
MaXM, a test-only VQA benchmark in 7 diverse languages, including Thai. The | ||
dataset is generated by first applying a translation-based framework to mVQA and | ||
then applying framework to the multilingual captions in the Crossmodal-3600 | ||
dataset. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/google-research-datasets/maxm" | ||
|
||
_LANGUAGES = ["tha"] | ||
|
||
_LICENSE = f"""{Licenses.OTHERS.value} | \ | ||
The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. | ||
The dataset is provided "AS IS" without any warranty, express or implied. | ||
Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.""" | ||
|
||
_LOCAL = False | ||
|
||
_URL = "https://storage.googleapis.com/maxm/maxm_v1_release.zip" | ||
_SUBSETS = ["regular", "yesno"] | ||
|
||
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING] | ||
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # imqa | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class MaXMDataset(datasets.GeneratorBasedBuilder): | ||
"""A test-only VQA benchmark in 7 diverse languages, including Thai.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [] | ||
for subset in _SUBSETS: | ||
BUILDER_CONFIGS += [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} {subset} source schema", | ||
schema="source", | ||
subset_id=subset, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} {subset} SEACrowd schema", | ||
schema=_SEACROWD_SCHEMA, | ||
subset_id=subset, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_regular_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"image_id": datasets.Value("string"), | ||
"image_url": datasets.Value("string"), | ||
"question_id": datasets.Value("string"), | ||
"question": datasets.Value("string"), | ||
"answers": datasets.Sequence(datasets.Value("string")), | ||
"processed_answers": datasets.Sequence(datasets.Value("string")), | ||
"is_collection": datasets.Value("bool"), | ||
"method": datasets.Value("string"), | ||
} | ||
) | ||
elif self.config.schema == _SEACROWD_SCHEMA: | ||
features = SCHEMA_TO_FEATURES[ | ||
TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]] | ||
] # imqa_features | ||
features["meta"] = { | ||
"processed_answers": datasets.Sequence(datasets.Value("string")), | ||
"is_collection": datasets.Value("bool"), | ||
"method": datasets.Value("string"), | ||
} | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
data_path = Path(dl_manager.download_and_extract(_URL), "maxm_v1_release") | ||
file_path = ( | ||
data_path | ||
/ f"maxm_v1_{'yesno_' if self.config.subset_id == 'yesno' else ''}th.json" | ||
) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": file_path, | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
with open(filepath, "r", encoding="utf-8") as file: | ||
data = json.load(file) | ||
|
||
key = 0 | ||
data = data["annotations"] | ||
if self.config.schema == "source": | ||
for example in data: | ||
for id, qa_pair in enumerate(example["qa_pairs"]): | ||
yield key, { | ||
"image_id": example["image_id"], | ||
"image_url": example["image_url"][id], | ||
"question_id": qa_pair["question_id"], | ||
"question": qa_pair["question"], | ||
"answers": qa_pair["answers"], | ||
"processed_answers": qa_pair["processed_answers"], | ||
"is_collection": qa_pair["is_collection"], | ||
"method": qa_pair["method"], | ||
} | ||
key += 1 | ||
elif self.config.schema == _SEACROWD_SCHEMA: | ||
for example in data: | ||
for id, qa_pair in enumerate(example["qa_pairs"]): | ||
yield key, { | ||
"id": str(key), | ||
"question_id": qa_pair["question_id"], | ||
"document_id": example["image_id"], | ||
"questions": [qa_pair["question"]], | ||
# "type": None, | ||
# "choices": None, | ||
# "context": None, | ||
"answer": qa_pair["answers"], | ||
"image_paths": [example["image_url"][id]], | ||
"meta": { | ||
"processed_answers": qa_pair["processed_answers"], | ||
"is_collection": qa_pair["is_collection"], | ||
"method": qa_pair["method"], | ||
}, | ||
} | ||
key += 1 |