-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* feat: pho_ner_covid dataloader * refactor: classname Co-authored-by: Lj Miranda <[email protected]> * fix: remove main function Co-authored-by: Lj Miranda <[email protected]> * refactor: remove inplace uses for dataframe * refactor: remove duplicate statement --------- Co-authored-by: Lj Miranda <[email protected]>
- Loading branch information
1 parent
3e0810d
commit b57ca66
Showing
2 changed files
with
203 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@inproceedings{PhoNER_COVID19, | ||
title = {{COVID-19 Named Entity Recognition for Vietnamese}}, | ||
author = {Thinh Hung Truong and Mai Hoang Dao and Dat Quoc Nguyen}, | ||
booktitle = {Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, | ||
year = {2021} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "pho_ner_covid" | ||
|
||
_DESCRIPTION = """\ | ||
A named entity recognition dataset for Vietnamese with 10 newly-defined entity types in the context of the COVID-19 pandemic. | ||
Data is extracted from news articles and manually annotated. In total, there are 34 984 entities over 10 027 sentences. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/VinAIResearch/PhoNER_COVID19/tree/main" | ||
|
||
_LANGUAGES = ["vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
_DATASETNAME: { | ||
"word_level": { | ||
"dev": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/dev_word.json", | ||
"train": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/train_word.json", | ||
"test": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/test_word.json", | ||
}, | ||
"syllable_level": { | ||
"dev": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/dev_syllable.json", | ||
"train": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/train_syllable.json", | ||
"test": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/test_syllable.json", | ||
}, | ||
} | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] | ||
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] | ||
|
||
_SUPPORTED_SCHEMA_STRING_MAP: Dict[Tasks, str] = {} | ||
|
||
for task, schema_string in zip(_SUPPORTED_TASKS, _SUPPORTED_SCHEMA_STRINGS): | ||
_SUPPORTED_SCHEMA_STRING_MAP[task] = schema_string | ||
|
||
_SUBSETS = ["word_level", "syllable_level"] | ||
_SPLITS = ["train", "dev", "test"] | ||
_TAGS = [ | ||
"O", | ||
"B-ORGANIZATION", | ||
"I-ORGANIZATION", | ||
"B-SYMPTOM_AND_DISEASE", | ||
"I-SYMPTOM_AND_DISEASE", | ||
"B-LOCATION", | ||
"B-DATE", | ||
"B-PATIENT_ID", | ||
"B-AGE", | ||
"B-NAME", | ||
"I-DATE", | ||
"B-JOB", | ||
"I-LOCATION", | ||
"B-TRANSPORTATION", | ||
"B-GENDER", | ||
"I-TRANSPORTATION", | ||
"I-JOB", | ||
"I-NAME", | ||
"I-AGE", | ||
"I-PATIENT_ID", | ||
"I-GENDER", | ||
] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class PhoNerCovidDataset(datasets.GeneratorBasedBuilder): | ||
"""A named entity recognition dataset for Vietnamese with 10 newly-defined entity types in the context of the COVID-19 pandemic.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [] | ||
|
||
for subset_id in _SUBSETS: | ||
BUILDER_CONFIGS.append( | ||
SEACrowdConfig( | ||
name=f"{subset_id}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=subset_id, | ||
) | ||
) | ||
|
||
seacrowd_schema_config: list[SEACrowdConfig] = [] | ||
|
||
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS: | ||
|
||
seacrowd_schema_config.append( | ||
SEACrowdConfig( | ||
name=f"{subset_id}_{seacrowd_schema}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} {seacrowd_schema} schema", | ||
schema=f"{seacrowd_schema}", | ||
subset_id=subset_id, | ||
) | ||
) | ||
|
||
BUILDER_CONFIGS.extend(seacrowd_schema_config) | ||
|
||
DEFAULT_CONFIG_NAME = f"{_SUBSETS[0]}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"words": datasets.Sequence(datasets.Value("string")), | ||
"tags": datasets.Sequence(datasets.ClassLabel(names=_TAGS)), | ||
} | ||
) | ||
|
||
elif self.config.schema == _SUPPORTED_SCHEMA_STRING_MAP[Tasks.NAMED_ENTITY_RECOGNITION]: | ||
features = schemas.seq_label_features(label_names=_TAGS) | ||
|
||
else: | ||
raise ValueError(f"Invalid config: {self.config.name}") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
split_generators = [] | ||
|
||
for split in _SPLITS: | ||
path = dl_manager.download_and_extract(_URLS[_DATASETNAME][self.config.subset_id][split]) | ||
|
||
split_generators.append( | ||
datasets.SplitGenerator( | ||
name=split, | ||
gen_kwargs={ | ||
"path": path, | ||
}, | ||
) | ||
) | ||
|
||
return split_generators | ||
|
||
def _generate_examples(self, path: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
idx = 0 | ||
df = pd.read_json(path, lines=True) | ||
|
||
if self.config.schema == "source": | ||
for _, row in df.iterrows(): | ||
yield idx, row.to_dict() | ||
idx += 1 | ||
|
||
elif self.config.schema == _SUPPORTED_SCHEMA_STRING_MAP[Tasks.NAMED_ENTITY_RECOGNITION]: | ||
df["id"] = df.index | ||
df = df.rename(columns={"words": "tokens", "tags": "labels"}) | ||
|
||
for _, row in df.iterrows(): | ||
yield idx, row.to_dict() | ||
idx += 1 | ||
|
||
else: | ||
raise ValueError(f"Invalid config: {self.config.name}") |