-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a4b01ce
commit abd5de4
Showing
1 changed file
with
139 additions
and
0 deletions.
There are no files selected for viewing
139 changes: 139 additions & 0 deletions
139
seacrowd/sea_datasets/typhoon_yolanda_tweets/typhoon_yolanda_tweets.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import os | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.DEPENDENCY_PARSING] | ||
|
||
_CITATION = """\ | ||
@misc{imperial2019sentiment, | ||
title={Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks}, | ||
author={Joseph Marvin Imperial and Jeyrome Orosco and Shiela Mae Mazo and Lany Maceda}, | ||
year={2019}, | ||
eprint={1908.01765}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.NE} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "typhoon_yolanda_tweets" | ||
|
||
_DESCRIPTION = """\ | ||
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, | ||
and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three | ||
sentiment categories: positive, negative, and neutral. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Annotated%20Yolanda" | ||
|
||
_LICENSE = Licenses.CC_BY_4_0.value | ||
|
||
_ROOT_URL = "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/Tweets/Annotated%20Yolanda/" | ||
_URLS = {"train": {-1: _ROOT_URL + "train/-1.txt", 0: _ROOT_URL + "train/0.txt", 1: _ROOT_URL + "train/1.txt"}, "test": {-1: _ROOT_URL + "test/-1.txt", 0: _ROOT_URL + "test/0.txt", 1: _ROOT_URL + "test/1.txt"}} | ||
|
||
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
# TODO: Name the dataset class to match the script name using CamelCase instead of snake_case | ||
class TyphoonYolandaTweets(datasets.GeneratorBasedBuilder): | ||
""" | ||
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and | ||
after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment | ||
categories: positive, negative, and neutral. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name="typhoon_yolanda_tweets_source", | ||
version=SOURCE_VERSION, | ||
description="Typhoon Yolanda Tweets source schema", | ||
schema="source", | ||
subset_id="typhoon_yolanda_tweets", | ||
), | ||
SEACrowdConfig( | ||
name="typhoon_yolanda_tweets_seacrowd_text", | ||
version=SEACROWD_VERSION, | ||
description="Typhoon Yolanda Tweets SEACrowd schema", | ||
schema="seacrowd_text", | ||
subset_id="typhoon_yolanda_tweets", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = "typhoon_yolanda_tweets_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"text": datasets.Value("string"), | ||
"label": datasets.Value("string"), | ||
} | ||
) | ||
elif self.config.schema == "seacrowd_text": | ||
features = schemas.text_features(["-1", "0", "1"]) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
emos = [-1, 0, 1] | ||
# TODO: KEEP if your dataset is LOCAL; remove if NOT | ||
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": | ||
train_path = dl_manager.download_and_extract({emo: _URLS["train"][emo] for emo in emos}) | ||
|
||
test_path = dl_manager.download_and_extract({emo: _URLS["test"][emo] for emo in emos}) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": train_path, | ||
"split": "train", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": test_path, | ||
"split": "test", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
if self.config.schema != "source" and self.config.schema != "seacrowd_text": | ||
raise ValueError(f"Invalid config: {self.config.name}") | ||
|
||
df = pd.DataFrame(columns=["text", "label"]) | ||
|
||
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text": | ||
for emo, file in filepath.items(): | ||
with open(file) as f: | ||
t = f.readlines() | ||
l = [str(emo) for i in range(len(t))] | ||
tmp_df = pd.DataFrame.from_dict({"text": t, "label": l}) | ||
df = pd.concat([df, tmp_df], ignore_index=True) | ||
|
||
for row in df.itertuples(): | ||
print(row) | ||
ex = {"id": str(row.Index), "text": row.text, "label": row.label} | ||
yield row.Index, ex |