Skip to content

Commit

Permalink
Typhoon Yolanda Tweets dataloader
Browse files Browse the repository at this point in the history
  • Loading branch information
IvanHalimP committed Nov 14, 2023
1 parent a4b01ce commit abd5de4
Showing 1 changed file with 139 additions and 0 deletions.
139 changes: 139 additions & 0 deletions seacrowd/sea_datasets/typhoon_yolanda_tweets/typhoon_yolanda_tweets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.DEPENDENCY_PARSING]

_CITATION = """\
@misc{imperial2019sentiment,
title={Sentiment Analysis of Typhoon Related Tweets using Standard and Bidirectional Recurrent Neural Networks},
author={Joseph Marvin Imperial and Jeyrome Orosco and Shiela Mae Mazo and Lany Maceda},
year={2019},
eprint={1908.01765},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
"""

_DATASETNAME = "typhoon_yolanda_tweets"

_DESCRIPTION = """\
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during,
and after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three
sentiment categories: positive, negative, and neutral.
"""

_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Annotated%20Yolanda"

_LICENSE = Licenses.CC_BY_4_0.value

_ROOT_URL = "https://raw.githubusercontent.com/imperialite/Philippine-Languages-Online-Corpora/master/Tweets/Annotated%20Yolanda/"
_URLS = {"train": {-1: _ROOT_URL + "train/-1.txt", 0: _ROOT_URL + "train/0.txt", 1: _ROOT_URL + "train/1.txt"}, "test": {-1: _ROOT_URL + "test/-1.txt", 0: _ROOT_URL + "test/0.txt", 1: _ROOT_URL + "test/1.txt"}}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


# TODO: Name the dataset class to match the script name using CamelCase instead of snake_case
class TyphoonYolandaTweets(datasets.GeneratorBasedBuilder):
"""
The dataset contains annotated typhoon and disaster-related tweets in Filipino collected before, during, and
after one month of Typhoon Yolanda in 2013. The dataset has been annotated by an expert into three sentiment
categories: positive, negative, and neutral.
"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name="typhoon_yolanda_tweets_source",
version=SOURCE_VERSION,
description="Typhoon Yolanda Tweets source schema",
schema="source",
subset_id="typhoon_yolanda_tweets",
),
SEACrowdConfig(
name="typhoon_yolanda_tweets_seacrowd_text",
version=SEACROWD_VERSION,
description="Typhoon Yolanda Tweets SEACrowd schema",
schema="seacrowd_text",
subset_id="typhoon_yolanda_tweets",
),
]

DEFAULT_CONFIG_NAME = "typhoon_yolanda_tweets_source"

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["-1", "0", "1"])

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
emos = [-1, 0, 1]
# TODO: KEEP if your dataset is LOCAL; remove if NOT
if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text":
train_path = dl_manager.download_and_extract({emo: _URLS["train"][emo] for emo in emos})

test_path = dl_manager.download_and_extract({emo: _URLS["test"][emo] for emo in emos})

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
"split": "test",
},
),
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema != "source" and self.config.schema != "seacrowd_text":
raise ValueError(f"Invalid config: {self.config.name}")

df = pd.DataFrame(columns=["text", "label"])

if self.config.name == "typhoon_yolanda_tweets_source" or self.config.name == "typhoon_yolanda_tweets_seacrowd_text":
for emo, file in filepath.items():
with open(file) as f:
t = f.readlines()
l = [str(emo) for i in range(len(t))]
tmp_df = pd.DataFrame.from_dict({"text": t, "label": l})
df = pd.concat([df, tmp_df], ignore_index=True)

for row in df.itertuples():
print(row)
ex = {"id": str(row.Index), "text": row.text, "label": row.label}
yield row.Index, ex

0 comments on commit abd5de4

Please sign in to comment.