-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* Create dataset loader for CLIRMatrix (#426) * Removing supported task for source-only in clir_matrix.py * Adding split comment for CLIRMatrix (#426) * Add comment for explaining test2 * do make formatter --------- Co-authored-by: Muhammad Ravi Shulthan Habibi <[email protected]>
- Loading branch information
1 parent
9c39d56
commit a06c609
Showing
2 changed files
with
234 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from itertools import permutations | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses | ||
|
||
_CITATION = """\ | ||
@inproceedings{sun-duh-2020-clirmatrix, | ||
title = "{CLIRM}atrix: A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval", | ||
author = "Sun, Shuo and | ||
Duh, Kevin", | ||
editor = "Webber, Bonnie and | ||
Cohn, Trevor and | ||
He, Yulan and | ||
Liu, Yang", | ||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", | ||
month = nov, | ||
year = "2020", | ||
address = "Online", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2020.emnlp-main.340", | ||
doi = "10.18653/v1/2020.emnlp-main.340", | ||
pages = "4160--4170", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "clir_matrix" | ||
|
||
_DESCRIPTION = """\ | ||
A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval extracted automatically from Wikipedia. | ||
CLIRMatrix (Cross-Lingual Information Retrieval Matrix) comprises: | ||
(1) BI-139, a bilingual dataset of queries in one language matched with relevant documents in another language for 139x138=19,182 language pairs, and | ||
(2) MULTI-8, a multilingual dataset of queries and documents jointly aligned in 8 different languages. | ||
Only (1) BI-139 has languages covered in SEACROWD. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/ssun32/CLIRMatrix" | ||
|
||
_LANGUAGES = ["tgl", "ilo", "min", "jav", "sun", "ceb", "vie", "tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = False | ||
|
||
_CLIR_LANG = { | ||
"tgl": "tl", | ||
"jav": "jv", | ||
"sun": "su", | ||
"vie": "vi", | ||
"tha": "th", | ||
"ilo": "ilo", | ||
"min": "min", | ||
"ceb": "ceb", | ||
} | ||
_URLS = { | ||
ds: { | ||
split: {(lque, ldoc): (f"https://www.cs.jhu.edu/~shuosun/clirmatrix/data/BI-139/{ds}/{_CLIR_LANG[lque]}/" f"{_CLIR_LANG[lque]}.{_CLIR_LANG[ldoc]}.{split}{'.base' if ds == 'base' else ''}.jl.gz") for lque, ldoc in permutations(_LANGUAGES, 2)} | ||
for split in ["train", "dev", "test1", "test2"] | ||
} | ||
for ds in ["base", "full"] | ||
} | {"docs": {ldoc: f"https://www.cs.jhu.edu/~shuosun/clirmatrix/data/DOCS/{_CLIR_LANG[ldoc]}.tsv.gz" for ldoc in _LANGUAGES}} | ||
|
||
_SUPPORTED_TASKS = [] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class CLIRMatrixDataset(datasets.GeneratorBasedBuilder): | ||
"""Cross-Lingual Information Retrieval dataset of 49 million unique queries and 34 billion triplets.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
*[ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}{subset}_source", # refers to the `base` split in the original paper. | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}{subset}", | ||
) | ||
for subset in [f"{'_' if lque else ''}{lque}{'_' if ldoc else ''}{ldoc}" for lque, ldoc in [("", ""), *permutations(_LANGUAGES, 2)]] | ||
], | ||
*[ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}{subset}_full_source", # refers to the `full` split in the original paper. | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} full subset source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}{subset}_full", | ||
) | ||
for subset in [f"{'_' if lque else ''}{lque}{'_' if ldoc else ''}{ldoc}" for lque, ldoc in [("", ""), *permutations(_LANGUAGES, 2)]] | ||
], | ||
# source-only dataloader | ||
# SEACrowdConfig( | ||
# name=f"{_DATASETNAME}_seacrowd_pairs", | ||
# version=SEACROWD_VERSION, | ||
# description=f"{_DATASETNAME} SEACrowd schema", | ||
# schema="seacrowd_pairs", | ||
# subset_id=f"{_DATASETNAME}", | ||
# ), | ||
# SEACrowdConfig( | ||
# name=f"{_DATASETNAME}_full_seacrowd_pairs", | ||
# version=SEACROWD_VERSION, | ||
# description=f"{_DATASETNAME} full subset SEACrowd schema", | ||
# schema="seacrowd_pairs", | ||
# subset_id=f"{_DATASETNAME}_full", | ||
# ), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"src_id": datasets.Value("string"), | ||
"src_query": datasets.Value("string"), | ||
"tgt_results": [ | ||
{ | ||
"doc_id": datasets.Value("string"), | ||
"score": datasets.Value("int32"), | ||
"doc_text": datasets.Value("string"), | ||
} | ||
], | ||
"lang_query": datasets.Value("string"), | ||
"lang_doc": datasets.Value("string"), | ||
} | ||
) | ||
|
||
# elif self.config.schema == "seacrowd_[seacrowdschema_name]": | ||
# source_only, skipping this. | ||
else: | ||
raise NotImplementedError() | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
subset_id = self.config.subset_id.split("_") | ||
|
||
urls = _URLS["full" if subset_id[-1] == "full" else "base"] | ||
urls_doc = _URLS["docs"] | ||
|
||
# filter subset direction | ||
if len(subset_id) > 3: | ||
lque, ldoc = subset_id[2:4] | ||
urls = {split: {(lque, ldoc): v[(lque, ldoc)]} for split, v in urls.items()} | ||
urls_doc = {ldoc: urls_doc[ldoc]} | ||
|
||
data_paths = dl_manager.download_and_extract(urls) | ||
doc_paths = dl_manager.download_and_extract(urls_doc) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": data_paths["train"], "doc_paths": doc_paths}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"filepath": data_paths["test1"], "doc_paths": doc_paths}, | ||
), | ||
datasets.SplitGenerator( | ||
name="test2", # just supplementary test sets for users to use in whatever way they want # just supplementary test sets for users to use in whatever way they want | ||
gen_kwargs={"filepath": data_paths["test2"], "doc_paths": doc_paths}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={"filepath": data_paths["dev"], "doc_paths": doc_paths}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Dict[Tuple, Path], doc_paths: Dict[str, Path]) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
docs_id2txt = {} | ||
for ldoc, p in doc_paths.items(): | ||
docs_id2txt[ldoc] = pd.read_csv(p, sep="\t", dtype=str, header=None).set_index(0).iloc[:, 0] | ||
|
||
if self.config.schema == "source": | ||
for (lque, ldoc), fp in filepath.items(): | ||
df = pd.read_json(fp, orient="records", lines=True) | ||
not_found = set() | ||
for idx, row in df.iterrows(): | ||
ret = row.to_dict() | ||
for doc_id, score in ret["tgt_results"]: | ||
if doc_id not in docs_id2txt[ldoc]: | ||
not_found.add(doc_id) | ||
ret["lang_query"] = lque | ||
ret["lang_doc"] = ldoc | ||
ret["tgt_results"] = [ | ||
{ | ||
"doc_id": doc_id, | ||
"score": score, | ||
"doc_text": docs_id2txt[ldoc].get(doc_id, ""), | ||
# many doc_id discrepancy, i.e. not found in the tab-separated document files, in particular for Sundanese (sun); | ||
} | ||
for doc_id, score in ret["tgt_results"] | ||
] | ||
yield f"{lque}_{ldoc}_{idx}", ret | ||
|
||
# source-only dataloader, skipping seacrowd schema. | ||
# elif self.config.schema == "seacrowd_[seacrowd_schema_name]": |