-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Closes #309 | Create dataset loader for Vietnamese Hate Speech Detect…
…ion (UIT-ViHSD) #309Uit vihsd (#501) * create dataloader for uit_vihsd * Update uit_vihsd.py * Add some info for the labels * Update example for Seacrowd schema
- Loading branch information
Showing
2 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
from typing import Dict, List, Tuple | ||
import datasets | ||
import pandas | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
_CITATION = """ | ||
@InProceedings{10.1007/978-3-030-79457-6_35, | ||
author="Luu, Son T. | ||
and Nguyen, Kiet Van | ||
and Nguyen, Ngan Luu-Thuy", | ||
editor="Fujita, Hamido | ||
and Selamat, Ali | ||
and Lin, Jerry Chun-Wei | ||
and Ali, Moonis", | ||
title="A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts", | ||
booktitle="Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices", | ||
year="2021", | ||
publisher="Springer International Publishing", | ||
address="Cham", | ||
pages="415--426", | ||
abstract="In recent years, Vietnam witnesses the mass development of social network users on different social | ||
platforms such as Facebook, Youtube, Instagram, and Tiktok. On social media, hate speech has become a critical | ||
problem for social network users. To solve this problem, we introduce the ViHSD - a human-annotated dataset for | ||
automatically detecting hate speech on the social network. This dataset contains over 30,000 comments, each comment | ||
in the dataset has one of three labels: CLEAN, OFFENSIVE, or HATE. Besides, we introduce the data creation process | ||
for annotating and evaluating the quality of the dataset. Finally, we evaluate the dataset by deep learning and transformer models.", | ||
isbn="978-3-030-79457-6" | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["vie"] | ||
_DATASETNAME = "uit_vihsd" | ||
_DESCRIPTION = """ | ||
The ViHSD dataset consists of comments collected from Facebook pages and YouTube channels that have a | ||
high-interactive rate, and do not restrict comments. This dataset is used for hate speech detection on | ||
Vietnamese language. Data is anonymized, and labeled as either HATE, OFFENSIVE, or CLEAN. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/sonlam1102/vihsd/" | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_URL = "https://raw.githubusercontent.com/sonlam1102/vihsd/main/data/vihsd.zip" | ||
|
||
_Split_Path = { | ||
"train": "vihsd/train.csv", | ||
"validation": "vihsd/dev.csv", | ||
"test": "vihsd/test.csv", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class UiTVihsdDataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
The SeaCrowd dataloader for the dataset Vietnamese Hate Speech Detection (UIT-ViHSD). | ||
""" | ||
|
||
CLASS_LABELS = ["CLEAN", "OFFENSIVE", "HATE"] # 0:CLEAN, 1:OFFENSIVE, 2:HATE | ||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_text", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd schema ", | ||
schema="seacrowd_text", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("int64"), | ||
"text": datasets.Value("string"), | ||
"label": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_text": | ||
features = schemas.text_features(label_names=self.CLASS_LABELS) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
file_paths = dl_manager.download_and_extract(_URL) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
data_lines = pandas.read_csv(filepath) | ||
for row in data_lines.itertuples(): | ||
if self.config.schema == "source": | ||
example = {"id": str(row.Index), "text": row.free_text, "label": row.label_id} | ||
if self.config.schema == "seacrowd_text": | ||
example = {"id": str(row.Index), "text": row.free_text, "label": self.CLASS_LABELS[int(row.label_id)]} | ||
yield row.Index, example | ||
|