-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* feat: add template dataloader * feat: add VinText dataloader * nitpick meta change to annots * update citation Co-authored-by: Akhdan Fadhilah <[email protected]> * nitpick yield None string Co-authored-by: Akhdan Fadhilah <[email protected]> * nitpick yield context, labels None Co-authored-by: Akhdan Fadhilah <[email protected]> * fix: gdown import, string to Path object * nitpick description * refactor image_text metadata for annots * Update whitespaces in vintext.py to pass makefile * delete insignificant schema change * revert to original image_text --------- Co-authored-by: Akhdan Fadhilah <[email protected]> Co-authored-by: Frederikus Hudi <[email protected]> Co-authored-by: Akhdan Fadhilah <[email protected]>
- Loading branch information
1 parent
d9b3154
commit 95efbb1
Showing
3 changed files
with
235 additions
and
1 deletion.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. | ||
This dataset contains 1500 fully annotated images from the original format. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. | ||
The dataset is randomly split into 2 subsets for training (1,200 images) and testing (300 images). | ||
""" | ||
import os | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@INPROCEEDINGS{vintext, | ||
author={Nguyen, Nguyen and Nguyen, Thu and Tran, Vinh and Tran, Minh-Triet and Ngo, Thanh Duc and Huu Nguyen, Thien and Hoai, Minh}, | ||
booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||
title={Dictionary-guided Scene Text Recognition}, | ||
year={2021}, | ||
pages={7379-7388}, | ||
keywords={Training;Visualization;Computer vision;Casting;Dictionaries;Codes;Text recognition}, | ||
doi={10.1109/CVPR46437.2021.00730} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "vintext" | ||
|
||
_DESCRIPTION = """\ | ||
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. | ||
This dataset contains 2000 fully annotated images with 56,084 text instances. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. | ||
The dataset is randomly split into three subsets for training (1,200 images), validation (300 images), and testing (500 images). | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/VinAIResearch/dict-guided" | ||
|
||
_LANGUAGES = ["vie"] | ||
|
||
_LICENSE = Licenses.AGPL_3_0.value | ||
|
||
_LOCAL = False | ||
|
||
_GDRIVE_ID = "1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" | ||
|
||
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class VintextDataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
Vintext is a challenging scene text dataset for Vietnamese, where some characters are equivocal in the visual form due to accent symbols. | ||
This dataset contains 1500 fully annotated images from the original format. Each text instance is delineated by a quadrilateral bounding box and associated with the ground truth sequence of characters. | ||
The dataset is randomly split into 2 subsets for training (1,200 images) and testing (300 images). | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_imtext", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_imtext", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"image_path": datasets.Value("string"), | ||
"annotations": datasets.Sequence( | ||
{ | ||
"x1": datasets.Value("int32"), | ||
"y1": datasets.Value("int32"), | ||
"x2": datasets.Value("int32"), | ||
"y2": datasets.Value("int32"), | ||
"x3": datasets.Value("int32"), | ||
"y3": datasets.Value("int32"), | ||
"x4": datasets.Value("int32"), | ||
"y4": datasets.Value("int32"), | ||
"transcript": datasets.Value("string"), | ||
} | ||
), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_imtext": | ||
features = schemas.image_text_features() | ||
features["metadata"]["annotations"] = datasets.Sequence( | ||
{ | ||
"x1": datasets.Value("int32"), | ||
"y1": datasets.Value("int32"), | ||
"x2": datasets.Value("int32"), | ||
"y2": datasets.Value("int32"), | ||
"x3": datasets.Value("int32"), | ||
"y3": datasets.Value("int32"), | ||
"x4": datasets.Value("int32"), | ||
"y4": datasets.Value("int32"), | ||
"transcript": datasets.Value("string"), | ||
} | ||
) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
try: | ||
import gdown | ||
except ImportError as err: | ||
raise ImportError("You need to install gdown (`pip install gdown`) to downloads a public file/folder from Google Drive.") from err | ||
|
||
zip_filepath = os.path.join(os.path.dirname(__file__), "vietnamese_original.zip") | ||
if not os.path.exists(zip_filepath): | ||
gdown.download(id=_GDRIVE_ID, output=zip_filepath) | ||
|
||
data_dir = dl_manager.extract(zip_filepath) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"imagepath": Path(data_dir) / "vietnamese/train_images", | ||
"labelpath": Path(data_dir) / "vietnamese/labels", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"imagepath": Path(data_dir) / "vietnamese/test_image", | ||
"labelpath": Path(data_dir) / "vietnamese/labels", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, imagepath: Path, labelpath: Path) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
df_list = [] | ||
|
||
for image in os.listdir(imagepath): | ||
image_id = int(image.split(".")[0][2:]) | ||
label_file = os.path.join(labelpath, f"gt_{image_id}.txt") | ||
with open(label_file, "r") as f: | ||
label = f.read().strip() | ||
df_list.append({"id": image_id, "image_path": os.path.join(imagepath, image), "label": label}) | ||
|
||
if self.config.schema == "source": | ||
for i, row in enumerate(df_list): | ||
labels = [label.split(",") for label in row["label"].split("\n")] | ||
|
||
yield i, { | ||
"id": row["id"], | ||
"image_path": row["image_path"], | ||
"annotations": [ | ||
{ | ||
"x1": label[0], | ||
"y1": label[1], | ||
"x2": label[2], | ||
"y2": label[3], | ||
"x3": label[4], | ||
"y3": label[5], | ||
"x4": label[6], | ||
"y4": label[7], | ||
"transcript": label[8], | ||
} | ||
for label in labels | ||
], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_imtext": | ||
for i, row in enumerate(df_list): | ||
labels = [label.split(",") for label in row["label"].split("\n")] | ||
|
||
yield i, { | ||
"id": row["id"], | ||
"image_paths": [row["image_path"]], | ||
"texts": None, | ||
"metadata": { | ||
"context": None, | ||
"labels": None, | ||
"annotations": [ | ||
{ | ||
"x1": label[0], | ||
"y1": label[1], | ||
"x2": label[2], | ||
"y2": label[3], | ||
"x3": label[4], | ||
"y3": label[5], | ||
"x4": label[6], | ||
"y4": label[7], | ||
"transcript": label[8], | ||
} | ||
for label in labels | ||
], | ||
}, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -16,4 +16,3 @@ def features(label_names = ["Yes", "No"]): | |
} | ||
} | ||
) | ||
|