-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #20 from ljvmiranda921/add/filipino-slang-norm
Closes #15 | Add filipino_slang_norm data loader
- Loading branch information
Showing
2 changed files
with
136 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
136 changes: 136 additions & 0 deletions
136
seacrowd/sea_datasets/filipino_slang_norm/filipino_slang_norm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
from datasets.download.download_manager import DownloadManager | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """ | ||
@inproceedings{flores-radev-2022-look, | ||
title = "Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in {F}ilipino", | ||
author = "Flores, Lorenzo Jaime and | ||
Radev, Dragomir", | ||
booktitle = "Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)", | ||
month = dec, | ||
year = "2022", | ||
address = "Abu Dhabi, United Arab Emirates (Hybrid)", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2022.sustainlp-1.5", | ||
pages = "29--35", | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["fil"] | ||
_DATASETNAME = "filipino_slang_norm" | ||
_DESCRIPTION = """\ | ||
This dataset contains 398 abbreviated and/or contracted Filipino words used in | ||
Facebook comments made on weather advisories from a Philippine weather bureau. | ||
volunteers. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/ljyflores/efficient-spelling-normalization-filipino" | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_URLS = { | ||
"train": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/train_words.csv", | ||
"test": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/test_words.csv", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class FilipinoSlangNormDataset(datasets.GeneratorBasedBuilder): | ||
"""Filipino Slang Norm dataset by Flores and Radev (2022)""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "t2t" | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"src_sent": datasets.Value("string"), | ||
"norm_sent": datasets.Value("string"), | ||
} | ||
) | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text2text_features | ||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
data_files = { | ||
"train": Path(dl_manager.download_and_extract(_URLS["train"])), | ||
"test": Path(dl_manager.download_and_extract(_URLS["test"])), | ||
} | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": data_files["train"], | ||
"split": "train", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": data_files["test"], | ||
"split": "test", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yield examples as (key, example) tuples""" | ||
with open(filepath, encoding="utf-8") as f: | ||
for guid, line in enumerate(f): | ||
src_sent, norm_sent = line.strip("\n").split(",") | ||
if self.config.schema == "source": | ||
example = { | ||
"id": str(guid), | ||
"src_sent": src_sent, | ||
"norm_sent": norm_sent, | ||
} | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
example = { | ||
"id": str(guid), | ||
"text_1": src_sent, | ||
"text_2": norm_sent, | ||
"text_1_name": "src_sent", | ||
"text_2_name": "norm_sent", | ||
} | ||
yield guid, example |