-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* add dataloader for asr_indocsc * Update asr_indocsc.py for data downloading instructions
- Loading branch information
Showing
2 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import os | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
# no bibtex citation | ||
_CITATION = "" | ||
_DATASETNAME = "asr_indocsc" | ||
_DESCRIPTION = """\ | ||
This open-source dataset consists of 4.54 hours of transcribed Indonesian | ||
conversational speech on certain topics, where seven conversations between two | ||
pairs of speakers were contained. Please create an account and be logged in on | ||
https://magichub.com to download the data. | ||
""" | ||
|
||
_HOMEPAGE = "https://magichub.com/datasets/indonesian-conversational-speech-corpus/" | ||
_LANGUAGES = ["ind"] | ||
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value | ||
_LOCAL = False | ||
_URLS = { | ||
_DATASETNAME: "https://magichub.com/df/df.php?file_name=Indonesian_Conversational_Speech_Corpus.zip", | ||
} | ||
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class ASRIndocscDataset(datasets.GeneratorBasedBuilder): | ||
"""ASR-Indocsc consists transcribed Indonesian conversational speech on certain topics""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "sptext" | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"channel": datasets.Value("string"), | ||
"uttrans_id": datasets.Value("string"), | ||
"speaker_id": datasets.Value("string"), | ||
"topic": datasets.Value("string"), | ||
"text": datasets.Value("string"), | ||
"path": datasets.Value("string"), | ||
"audio": datasets.Audio(sampling_rate=16_000), | ||
"speaker_gender": datasets.Value("string"), | ||
"speaker_age": datasets.Value("int64"), | ||
"speaker_region": datasets.Value("string"), | ||
"speaker_device": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.speech_text_features | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
data_paths = { | ||
_DATASETNAME: Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])), | ||
} | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": data_paths[_DATASETNAME], | ||
"split": "train", | ||
}, | ||
) | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
# read AUDIOINFO file | ||
# columns: channel, uttrans_id, speaker_id, topic | ||
audioinfo_filepath = os.path.join(filepath, "AUDIOINFO.txt") | ||
with open(audioinfo_filepath, "r", encoding="utf-8") as audioinfo_file: | ||
audioinfo_data = audioinfo_file.readlines() | ||
audioinfo_data = audioinfo_data[1:] # remove header | ||
audioinfo_data = [s.strip("\n").split("\t") for s in audioinfo_data] | ||
|
||
# read SPKINFO file | ||
# columns: channel, speaker_id, gender, age, region, device | ||
spkinfo_filepath = os.path.join(filepath, "SPKINFO.txt") | ||
with open(spkinfo_filepath, "r", encoding="utf-8") as spkinfo_file: | ||
spkinfo_data = spkinfo_file.readlines() | ||
spkinfo_data = spkinfo_data[1:] # remove header | ||
spkinfo_data = [s.strip("\n").split("\t") for s in spkinfo_data] | ||
for i, s in enumerate(spkinfo_data): | ||
if s[2] == "M": | ||
s[2] = "male" | ||
elif s[2] == "F": | ||
s[2] = "female" | ||
else: | ||
s[2] = None | ||
# dictionary of metadata of each speaker | ||
spkinfo_dict = {s[1]: {"speaker_gender": s[2], "speaker_age": int(s[3]), "speaker_region": s[4], "speaker_device": s[5]} for s in spkinfo_data} | ||
|
||
num_sample = len(audioinfo_data) | ||
|
||
for i in range(num_sample): | ||
# wav file | ||
wav_path = os.path.join(filepath, "WAV", audioinfo_data[i][1]) | ||
# transcription file | ||
transcription_path = os.path.join(filepath, "TXT", audioinfo_data[i][1].replace("wav", "txt")) | ||
with open(transcription_path, "r", encoding="utf-8") as transcription_file: | ||
transcription = transcription_file.readlines() | ||
# remove redundant speaker info from transcription file | ||
transcription = [s.strip("\n").split("\t") for s in transcription] | ||
transcription = [s[-1] for s in transcription] | ||
text = " \n ".join(transcription) | ||
|
||
if self.config.schema == "source": | ||
example = { | ||
"id": audioinfo_data[i][1].strip(".wav"), | ||
"channel": audioinfo_data[i][0], | ||
"uttrans_id": audioinfo_data[i][1], | ||
"speaker_id": audioinfo_data[i][2], | ||
"topic": audioinfo_data[i][3], | ||
"text": text, | ||
"path": wav_path, | ||
"audio": wav_path, | ||
"speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"], | ||
"speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"], | ||
"speaker_region": spkinfo_dict[audioinfo_data[i][2]]["speaker_region"], | ||
"speaker_device": spkinfo_dict[audioinfo_data[i][2]]["speaker_device"], | ||
} | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
example = { | ||
"id": audioinfo_data[i][1].strip(".wav"), | ||
"speaker_id": audioinfo_data[i][2], | ||
"path": wav_path, | ||
"audio": wav_path, | ||
"text": text, | ||
"metadata": {"speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"], "speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"]}, | ||
} | ||
|
||
yield i, example |