Skip to content

Commit

Permalink
Closes #614 | Add Dataloader LEXiTRON (#646)
Browse files Browse the repository at this point in the history
* finishing lexitron dataloader

* update citation

Co-authored-by: Lj Miranda <[email protected]>

* do formatter with make check_file

---------

Co-authored-by: Lj Miranda <[email protected]>
  • Loading branch information
muhammadravi251001 and ljvmiranda921 authored May 20, 2024
1 parent c822dea commit 61370c2
Show file tree
Hide file tree
Showing 2 changed files with 295 additions and 0 deletions.
Empty file.
295 changes: 295 additions & 0 deletions seacrowd/sea_datasets/lexitron/lexitron.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

# There are no citations available for this dataset.
_CITATION = ""

_DATASETNAME = "lexitron"

_DESCRIPTION = """
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""

_HOMEPAGE = "https://opend-portal.nectec.or.th/dataset/lexitron-2-0"

_LANGUAGES = ["tha"]

_LICENSE = Licenses.OTHERS.value

_LOCAL = False

_URLS = {
"telex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
"etlex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
}

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class LEXiTRONDataset(datasets.GeneratorBasedBuilder):
"""
Corpus-based dictionary of Thai and English languages. \
This dataset contains frequently-used words from trusted \
publications such as novels, academic documents and newspaper. \
The dataset link contains Thai-English and English-Thai lexicons. \
Thai-English vocabulary consists of vocabulary, type of word \
(part of speech), translation, synonym (synonym) and sample sentences \
with a list of Thai-> English words, 53,000 words and English vocabulary \
list -> Thai, 83,000 words.
"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_telex_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_telex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_telex_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_telex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_etlex_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_etlex",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_etlex_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_etlex",
),
]

DEFAULT_CONFIG_NAME = "[dataset_name]_source"

def _info(self) -> datasets.DatasetInfo:

if self.config.schema == "source":

translation_type = self.config.name.split("_")[1]

if translation_type == "telex":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"tsearch": datasets.Value("string"),
"tentry": datasets.Value("string"),
"eentry": datasets.Value("string"),
"tcat": datasets.Value("string"),
"tsyn": datasets.Value("string"),
"tsample": datasets.Value("string"),
"tdef": datasets.Value("string"),
}
)

elif translation_type == "etlex":
features = datasets.Features(
{"id": datasets.Value("int64"), "esearch": datasets.Value("string"), "eentry": datasets.Value("string"), "tentry": datasets.Value("string"), "ecat": datasets.Value("string"), "esyn": datasets.Value("string")}
)

elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""

translation_type = self.config.name.split("_")[1]
data_dir = dl_manager.download_and_extract(_URLS[translation_type])

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"LEXiTRON_2.0/{translation_type}"),
"split": "train",
},
)
]

def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""

translation_type = self.config.name.split("_")[1]

if translation_type == "telex":

with open(filepath, "r", encoding="latin-1") as file:
data = file.read()

pattern = r"<Doc>(.*?)</Doc>"
docs = re.findall(pattern, data, re.DOTALL)

doc_data = []

for doc in docs:
tsearch = tentry = eentry = tcat = tsyn = tsample = tdef = id = None

tsearch_match = re.search(r"<tsearch>(.*?)</tsearch>", doc)
if tsearch_match:
tsearch = tsearch_match.group(1)

tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
if tentry_match:
tentry = tentry_match.group(1)

eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
if eentry_match:
eentry = eentry_match.group(1)

tcat_match = re.search(r"<tcat>(.*?)</tcat>", doc)
if tcat_match:
tcat = tcat_match.group(1)

tsyn_match = re.search(r"<tsyn>(.*?)</tsyn>", doc)
if tsyn_match:
tsyn = tsyn_match.group(1)

tsample_match = re.search(r"<tsample>(.*?)</tsample>", doc)
if tsample_match:
tsample = tsample_match.group(1)

tdef_match = re.search(r"<tdef>(.*?)</tdef>", doc)
if tdef_match:
tdef = tdef_match.group(1)

id_match = re.search(r"<id>(.*?)</id>", doc)
if id_match:
id = id_match.group(1)

doc_data.append({"id": id, "tsearch": tsearch, "tentry": tentry, "eentry": eentry, "tcat": tcat, "tsyn": tsyn, "tsample": tsample, "tdef": tdef})

df = pd.DataFrame(doc_data)

if translation_type == "etlex":

with open(filepath, "r", encoding="latin-1") as file:
data = file.read()

pattern = r"<Doc>(.*?)</Doc>"
docs = re.findall(pattern, data, re.DOTALL)

doc_data = []

for doc in docs:
esearch = eentry = tentry = ecat = esyn = id = None

esearch_match = re.search(r"<esearch>(.*?)</esearch>", doc)
if esearch_match:
esearch = esearch_match.group(1)

eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
if eentry_match:
eentry = eentry_match.group(1)

tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
if tentry_match:
tentry = tentry_match.group(1)

ecat_match = re.search(r"<ecat>(.*?)</ecat>", doc)
if ecat_match:
ecat = ecat_match.group(1)

esyn_match = re.search(r"<esyn>(.*?)</esyn>", doc)
if esyn_match:
esyn = esyn_match.group(1)

id_match = re.search(r"<id>(.*?)</id>", doc)
if id_match:
id = id_match.group(1)

doc_data.append({"id": id, "esearch": esearch, "eentry": eentry, "tentry": tentry, "ecat": ecat, "esyn": esyn})

df = pd.DataFrame(doc_data)

for index, row in df.iterrows():

if self.config.schema == "source":
example = row.to_dict()

elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":

if translation_type == "telex":
example = {
"id": str(index),
"text_1": str(row["tentry"]),
"text_2": str(row["eentry"]),
"text_1_name": "tentry",
"text_2_name": "eentry",
}

if translation_type == "etlex":
example = {
"id": str(index),
"text_1": str(row["eentry"]),
"text_2": str(row["tentry"]),
"text_1_name": "eentry",
"text_2_name": "tentry",
}

yield index, example

0 comments on commit 61370c2

Please sign in to comment.