-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* finishing lexitron dataloader * update citation Co-authored-by: Lj Miranda <[email protected]> * do formatter with make check_file --------- Co-authored-by: Lj Miranda <[email protected]>
- Loading branch information
1 parent
c822dea
commit 61370c2
Showing
2 changed files
with
295 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Corpus-based dictionary of Thai and English languages. \ | ||
This dataset contains frequently-used words from trusted \ | ||
publications such as novels, academic documents and newspaper. \ | ||
The dataset link contains Thai-English and English-Thai lexicons. \ | ||
Thai-English vocabulary consists of vocabulary, type of word \ | ||
(part of speech), translation, synonym (synonym) and sample sentences \ | ||
with a list of Thai-> English words, 53,000 words and English vocabulary \ | ||
list -> Thai, 83,000 words. | ||
""" | ||
import os | ||
import re | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
# There are no citations available for this dataset. | ||
_CITATION = "" | ||
|
||
_DATASETNAME = "lexitron" | ||
|
||
_DESCRIPTION = """ | ||
Corpus-based dictionary of Thai and English languages. \ | ||
This dataset contains frequently-used words from trusted \ | ||
publications such as novels, academic documents and newspaper. \ | ||
The dataset link contains Thai-English and English-Thai lexicons. \ | ||
Thai-English vocabulary consists of vocabulary, type of word \ | ||
(part of speech), translation, synonym (synonym) and sample sentences \ | ||
with a list of Thai-> English words, 53,000 words and English vocabulary \ | ||
list -> Thai, 83,000 words. | ||
""" | ||
|
||
_HOMEPAGE = "https://opend-portal.nectec.or.th/dataset/lexitron-2-0" | ||
|
||
_LANGUAGES = ["tha"] | ||
|
||
_LICENSE = Licenses.OTHERS.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
"telex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip", | ||
"etlex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class LEXiTRONDataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
Corpus-based dictionary of Thai and English languages. \ | ||
This dataset contains frequently-used words from trusted \ | ||
publications such as novels, academic documents and newspaper. \ | ||
The dataset link contains Thai-English and English-Thai lexicons. \ | ||
Thai-English vocabulary consists of vocabulary, type of word \ | ||
(part of speech), translation, synonym (synonym) and sample sentences \ | ||
with a list of Thai-> English words, 53,000 words and English vocabulary \ | ||
list -> Thai, 83,000 words. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
SEACROWD_SCHEMA_NAME = "t2t" | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_telex_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_telex", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_telex_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=f"{_DATASETNAME}_telex", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_etlex_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_etlex", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_etlex_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=f"{_DATASETNAME}_etlex", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = "[dataset_name]_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
|
||
translation_type = self.config.name.split("_")[1] | ||
|
||
if translation_type == "telex": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("int64"), | ||
"tsearch": datasets.Value("string"), | ||
"tentry": datasets.Value("string"), | ||
"eentry": datasets.Value("string"), | ||
"tcat": datasets.Value("string"), | ||
"tsyn": datasets.Value("string"), | ||
"tsample": datasets.Value("string"), | ||
"tdef": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif translation_type == "etlex": | ||
features = datasets.Features( | ||
{"id": datasets.Value("int64"), "esearch": datasets.Value("string"), "eentry": datasets.Value("string"), "tentry": datasets.Value("string"), "ecat": datasets.Value("string"), "esyn": datasets.Value("string")} | ||
) | ||
|
||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text2text_features | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
translation_type = self.config.name.split("_")[1] | ||
data_dir = dl_manager.download_and_extract(_URLS[translation_type]) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": os.path.join(data_dir, f"LEXiTRON_2.0/{translation_type}"), | ||
"split": "train", | ||
}, | ||
) | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
translation_type = self.config.name.split("_")[1] | ||
|
||
if translation_type == "telex": | ||
|
||
with open(filepath, "r", encoding="latin-1") as file: | ||
data = file.read() | ||
|
||
pattern = r"<Doc>(.*?)</Doc>" | ||
docs = re.findall(pattern, data, re.DOTALL) | ||
|
||
doc_data = [] | ||
|
||
for doc in docs: | ||
tsearch = tentry = eentry = tcat = tsyn = tsample = tdef = id = None | ||
|
||
tsearch_match = re.search(r"<tsearch>(.*?)</tsearch>", doc) | ||
if tsearch_match: | ||
tsearch = tsearch_match.group(1) | ||
|
||
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc) | ||
if tentry_match: | ||
tentry = tentry_match.group(1) | ||
|
||
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc) | ||
if eentry_match: | ||
eentry = eentry_match.group(1) | ||
|
||
tcat_match = re.search(r"<tcat>(.*?)</tcat>", doc) | ||
if tcat_match: | ||
tcat = tcat_match.group(1) | ||
|
||
tsyn_match = re.search(r"<tsyn>(.*?)</tsyn>", doc) | ||
if tsyn_match: | ||
tsyn = tsyn_match.group(1) | ||
|
||
tsample_match = re.search(r"<tsample>(.*?)</tsample>", doc) | ||
if tsample_match: | ||
tsample = tsample_match.group(1) | ||
|
||
tdef_match = re.search(r"<tdef>(.*?)</tdef>", doc) | ||
if tdef_match: | ||
tdef = tdef_match.group(1) | ||
|
||
id_match = re.search(r"<id>(.*?)</id>", doc) | ||
if id_match: | ||
id = id_match.group(1) | ||
|
||
doc_data.append({"id": id, "tsearch": tsearch, "tentry": tentry, "eentry": eentry, "tcat": tcat, "tsyn": tsyn, "tsample": tsample, "tdef": tdef}) | ||
|
||
df = pd.DataFrame(doc_data) | ||
|
||
if translation_type == "etlex": | ||
|
||
with open(filepath, "r", encoding="latin-1") as file: | ||
data = file.read() | ||
|
||
pattern = r"<Doc>(.*?)</Doc>" | ||
docs = re.findall(pattern, data, re.DOTALL) | ||
|
||
doc_data = [] | ||
|
||
for doc in docs: | ||
esearch = eentry = tentry = ecat = esyn = id = None | ||
|
||
esearch_match = re.search(r"<esearch>(.*?)</esearch>", doc) | ||
if esearch_match: | ||
esearch = esearch_match.group(1) | ||
|
||
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc) | ||
if eentry_match: | ||
eentry = eentry_match.group(1) | ||
|
||
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc) | ||
if tentry_match: | ||
tentry = tentry_match.group(1) | ||
|
||
ecat_match = re.search(r"<ecat>(.*?)</ecat>", doc) | ||
if ecat_match: | ||
ecat = ecat_match.group(1) | ||
|
||
esyn_match = re.search(r"<esyn>(.*?)</esyn>", doc) | ||
if esyn_match: | ||
esyn = esyn_match.group(1) | ||
|
||
id_match = re.search(r"<id>(.*?)</id>", doc) | ||
if id_match: | ||
id = id_match.group(1) | ||
|
||
doc_data.append({"id": id, "esearch": esearch, "eentry": eentry, "tentry": tentry, "ecat": ecat, "esyn": esyn}) | ||
|
||
df = pd.DataFrame(doc_data) | ||
|
||
for index, row in df.iterrows(): | ||
|
||
if self.config.schema == "source": | ||
example = row.to_dict() | ||
|
||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
|
||
if translation_type == "telex": | ||
example = { | ||
"id": str(index), | ||
"text_1": str(row["tentry"]), | ||
"text_2": str(row["eentry"]), | ||
"text_1_name": "tentry", | ||
"text_2_name": "eentry", | ||
} | ||
|
||
if translation_type == "etlex": | ||
example = { | ||
"id": str(index), | ||
"text_1": str(row["eentry"]), | ||
"text_2": str(row["tentry"]), | ||
"text_1_name": "eentry", | ||
"text_2_name": "tentry", | ||
} | ||
|
||
yield index, example |