Skip to content

Commit

Permalink
Closes #516 | Add/Update Dataloader id_newspaper_2018 (#551)
Browse files Browse the repository at this point in the history
* Implement dataloader for id_newspaper_2018

* Specify JSON ecoding
  • Loading branch information
raileymontalan authored Apr 9, 2024
1 parent b080f35 commit 58514e0
Show file tree
Hide file tree
Showing 2 changed files with 150 additions and 0 deletions.
Empty file.
150 changes: 150 additions & 0 deletions seacrowd/sea_datasets/id_newspaper_2018/id_newspaper_2018.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@misc{feryandi2018,
author={Nurdiantoro, Feryandi}
title={Dataset-Artikel},
year = {2018},
url = {https://github.com/feryandi/Dataset-Artikel},
}
"""

_DATASETNAME = "id_newspaper_2018"

_DESCRIPTION = """\
The ID Newspapers 2018 dataset provides 500K articles from various Indonesian news sources. Articles were taken from
7 primary sources (Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika, Poskota). The compressed files can be
retrieved from datahttps://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018.
"""

_HOMEPAGE = "https://github.com/feryandi/Dataset-Artikel"

_LANGUAGES = ["ind"]

_LICENSE = Licenses.CC_BY_SA_4_0.value

_LOCAL = False

_URLS = "https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018/resolve/main/newspapers-json.tgz"

_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class IDNewspapers2018Dataset(datasets.GeneratorBasedBuilder):
"""
ID Newspapers 2018 is a pretraining dataset from https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018.
"""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_ssp",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_ssp",
subset_id=f"{_DATASETNAME}",
),
]

def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({"url": datasets.Value("string"), "date": datasets.Value("string"), "title": datasets.Value("string"), "content": datasets.Value("string")})
elif self.config.schema == "seacrowd_ssp":
features = schemas.ssp_features
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns SplitGenerators.
"""

path = dl_manager.download_and_extract(_URLS)

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path": path,
"split": "train",
},
)
]

def _generate_examples(self, path: Path, split: str) -> Tuple[int, Dict]:
"""
Yields examples as (key, example) tuples.
"""
file_paths = []
for path, subdirs, files in os.walk(path):
for name in files:
if name[-5:] == ".json":
file_paths.append(os.path.join(path, name))

for idx, file_path in enumerate(file_paths):
with open(file_path, "r", encoding="utf-8") as file:
data = json.load(file)

if self.config.schema == "source":
x = {
"url": data["url"],
"date": data["date"],
"title": data["title"],
"content": data["content"],
}
yield idx, x

elif self.config.schema == "seacrowd_ssp":
x = {
"id": str(idx),
"text": data["content"],
}
yield idx, x

else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")

0 comments on commit 58514e0

Please sign in to comment.