-
Notifications
You must be signed in to change notification settings - Fork 83
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #241 from Renumics/story/fine_tune
Story/fine tune
- Loading branch information
Showing
2 changed files
with
117 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Easily fine-tune a ViT with images from Bing search" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Use the sliceguard library and Spotlight to fine-tune a ViT model for image classification and detect problematic clusters in a dataset created from Bing search in a few lines of code." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# The Imports\n", | ||
"from renumics import spotlight\n", | ||
"from sliceguard.data import create_imagedataset_from_bing\n", | ||
"from sliceguard.models.huggingface import (\n", | ||
" finetune_image_classifier,\n", | ||
" generate_image_pred_probs_embeddings,\n", | ||
")\n", | ||
"from sliceguard.embeddings import generate_image_embeddings" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create an Image Dataset from Bing\n", | ||
"class_names = [\n", | ||
" \"Blue Tang\",\n", | ||
" \"Clownfish\",\n", | ||
" \"Spotted Eagle Ray\",\n", | ||
" \"Longnose Butterfly Fish\",\n", | ||
" \"Moorish Idol\",\n", | ||
" \"Royal Gramma Fish\",\n", | ||
"]\n", | ||
"df = create_imagedataset_from_bing(\n", | ||
" class_names, 25, \"data\", test_split=0.2, license=\"Free to share and use\"\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Fine-tune a ViT Model with the data (in 1-2 minutes on a GPU)\n", | ||
"finetune_image_classifier(\n", | ||
" df[df[\"split\"] == \"train\"],\n", | ||
" model_name=\"google/vit-base-patch16-224-in21k\",\n", | ||
" output_model_folder=\"./model_folder\",\n", | ||
" epochs=15,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Enrich the DataFrame with Predictions, Probabilities and Embeddings\n", | ||
"df[\"prediction\"], df[\"probs\"], df[\"embeddings\"] = generate_image_pred_probs_embeddings(\n", | ||
" df[\"image\"].values, model_name=\"./model_folder\"\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Check the result and detect problematic clusters\n", | ||
"spotlight.show(\n", | ||
" df, layout=\"https://spotlight.renumics.com/resources/image_classification_v1.0.json\"\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters