Skip to content

Commit

Permalink
Merge pull request #253 from Renumics/readme_change
Browse files Browse the repository at this point in the history
updated use cases
  • Loading branch information
ssuwelack authored Sep 28, 2023
2 parents 4921392 + 80c2d77 commit b42a550
Showing 1 changed file with 19 additions and 19 deletions.
38 changes: 19 additions & 19 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,56 +32,55 @@ spotlight.show(df, dtype={"image": spotlight.Image, "embedding": spotlight.Embed

## 🚀 Start with a use case

Machine learning and engineering teams use Spotlight to understand and communicate on complex unstructured data problems.

Here are some interactive examples on publicly available datasets:
Machine learning and engineering teams use Spotlight to understand and communicate on complex unstructured data problems. Here are some examples on publicly available datasets along with code snippets (👨‍💻), interactive demos (🕹️) and blog articles (📝):

<table>
<thead>
<tr>
<th>Modality</th>
<th>Task</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">🖼️ Image</td>
<td rowspan="3">🖼️ Image</td>
<td rowspan="3">[Classification]</td>
<td>Find Issues in Any Image Classification Dataset</td>
<td><a href="https://www.renumics.com/next/docs/use-cases/image-classification">👨‍💻</a> <a href="https://medium.com/@daniel-klitzke/finding-problematic-data-slices-in-unstructured-data-aeec0a3b9a2a">📝</a></td>
</tr>
<td><a href="https://www.renumics.com/next/docs/use-cases/image-classification">👨‍💻</a> <a href="https://medium.com/@daniel-klitzke/finding-problematic-data-slices-in-unstructured-data-aeec0a3b9a2a">📝</a> <a href="https://huggingface.co/spaces/renumics/sliceguard-unstructured-data">🕹️</a></td>
</tr>
<tr>
<td>Find data issues in the CIFAR-100 image dataset</td>
<td><a href="https://huggingface.co/spaces/renumics/navigate-data-issues">🕹️</a></td>
</tr>
<tr>
<td>Explore data slices in the CIFAR-100 image dataset</td>
<td><a href="https://huggingface.co/spaces/renumics/sliceguard-unstructured-data">🕹️</a></td>
</tr>
<tr>
<td>Fine-tuning image classification models from Bing image search</td>
<td><a href="https://renumics.com/next/docs/use-cases/image-fine-tuning">👨‍💻</a><a href="https://medium.com/@markus.stoll/image-classification-in-2023-8ab7dc552115">📝</a></td>
</tr>
<tr>
<td rowspan="3">🔊 Audio</td>
<td rowspan="3">[Classification]</td>
<td>Find Issues in Any Audio Classification Dataset</td>
<td><a href="https://www.renumics.com/next/docs/use-cases/audio-classification">👨‍💻</a> <a href="https://medium.com/@daniel-klitzke/finding-problematic-data-slices-in-unstructured-data-aeec0a3b9a2a">📝</a></td>
<td><a href="https://www.renumics.com/next/docs/use-cases/audio-classification">👨‍💻</a> <a href="https://medium.com/@daniel-klitzke/finding-problematic-data-slices-in-unstructured-data-aeec0a3b9a2a">📝</a><a href="https://huggingface.co/spaces/renumics/whisper-commonvoice-speaker-issues">🕹️</a></td>
</tr>
<tr>
<td>Find data issues in the Common Voice audio dataset</td>
<td><a href="https://huggingface.co/spaces/renumics/whisper-commonvoice-speaker-issues">🕹️</a></td>
<td>Debug pre-trained gender detection models on the emodb dataset</td>
<td><a href="https://medium.com/p/dbfd923a5a79#432e-3559ae606f80">📝</a> <a href="https://huggingface.co/spaces/renumics/emodb-model-debugging">🕹️</a></td>
</tr>
<tr>
<td>Compare gender detection models on the emodb dataset</td>
<td><a href="https://huggingface.co/spaces/renumics/emodb-model-comparison">🕹️</a></td>
<td><a href="https://medium.com/p/dbfd923a5a79#432e-3559ae606f80">📝</a> <a href="https://huggingface.co/spaces/renumics/emodb-model-comparison">🕹️</a></td>
</tr>
<tr>
<td rowspan="1">📝 Text</td>
<td rowspan="1">[Classification]</td>
<td>Find Issues in Any Text Classification Dataset</td>
<td><a href="https://www.renumics.com/next/docs/use-cases/text-classification">👨‍💻</a> <a href="https://medium.com/@daniel-klitzke/finding-problematic-data-slices-in-unstructured-data-aeec0a3b9a2a">📝</a></td>
</tr>
<tr>
<td rowspan="2">📈🖼️ Mixed</td>
<td rowspan="2">[EDA]</td>
<td>Explore results from the Formula1 Montreal 2023 GP</td>
<td><a href="https://huggingface.co/spaces/renumics/f1_montreal_gp">🕹️</a></td>
</tr>
Expand Down Expand Up @@ -116,7 +115,7 @@ import pandas as pd
from renumics import spotlight

df = pd.read_csv("https://renumics.com/data/mnist/mnist-tiny.csv")
spotlight.show(df, dtype={"image": spotlight.Image, "embedding": spotlight.Embedding})
spotlight.show(df, dtype={"image": spotlight.Image})
```

`pd.read_csv` loads a sample csv file as a pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html).
Expand All @@ -129,11 +128,12 @@ spotlight.show(df, dtype={"image": spotlight.Image, "embedding": spotlight.Embed
import datasets
from renumics import spotlight

dataset = datasets.load_dataset("renumics/dcase23-task2-enriched", "dev", split="all", streaming=False)
df = dataset.to_pandas()
simple_layout = datasets.load_dataset_builder("renumics/dcase23-task2-enriched", "dev").config.get_layout(config="simple")
spotlight.show(df, dtype={'path': spotlight.Audio, "embeddings_ast-finetuned-audioset-10-10-0.4593": spotlight.Embedding}, layout=simple_layout)
ds = datasets.load_dataset('renumics/emodb-enriched', split='all')
layout= spotlight.layouts.debug_classification(label='gender', prediction='m1_gender_prediction', embedding='m1_embedding', features=['age', 'emotion'])
df = ds.to_pandas()
spotlight.show(df, layout=layout)
```
Here, the data types are discovered automatically from the dataset and we use a pre-defined layout for model debugging. Custom layouts can be built programmatically or via the UI.

> The `datasets[audio]` package can be installed via pip.
Expand Down

0 comments on commit b42a550

Please sign in to comment.