Skip to content

Commit

Permalink
add testing bounds
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Mar 12, 2024
1 parent 1a0b087 commit 6280c66
Show file tree
Hide file tree
Showing 3 changed files with 132 additions and 43 deletions.
42 changes: 0 additions & 42 deletions blueprint/src/sections/kl_divergence.tex
Original file line number Diff line number Diff line change
Expand Up @@ -149,46 +149,4 @@ \section{Chain rule and tensorization}

\end{proof}

\section{Change of measure}

\begin{lemma}
\label{lem:llr_change_measure}
%\lean{}
%\leanok
%\uses{}
Let $\mu, \nu$ be two measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\beta \in \mathbb{R}$. Then
\begin{align*}
\nu(E) e^{\beta} \ge \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} > \beta \right\} \: .
\end{align*}
\end{lemma}

\begin{proof}
\begin{align*}
\nu(E)
&\ge \mu\left[\mathbb{I}(E) e^{- \log\frac{d \mu}{d \nu} }\right]
\\
&\ge \mu\left[\mathbb{I}\left(E \cap \left\{\log\frac{d \mu}{d \nu} \le \beta\right\}\right) e^{- \log\frac{d \mu}{d \nu} }\right]
\\
&\ge e^{- \beta}\mu\left(E \cap \left\{\log\frac{d \mu}{d \nu} \le \beta\right\}\right)
\\
&\ge e^{- \beta}\left( \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} > \beta \right\} \right)
\: .
\end{align*}
\end{proof}

\begin{corollary}
\label{cor:kl_change_measure}
%\lean{}
%\leanok
\uses{def:KL}
Let $\mu, \nu$ be two measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\beta \in \mathbb{R}$. Then
\begin{align*}
\nu(E) e^{\KL(\mu, \nu) + \beta} \ge \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} - \KL(\mu, \nu) > \beta \right\} \: .
\end{align*}
\end{corollary}

\begin{proof}
\uses{lem:llr_change_measure}
Use Lemma~\ref{lem:llr_change_measure} with the choice $\KL(\mu, \nu) + \beta$ for $\beta$.
\end{proof}

12 changes: 12 additions & 0 deletions blueprint/src/sections/renyi_divergence.tex
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,18 @@ \chapter{Rényi divergences}
Unfold the definitions.
\end{proof}

\begin{lemma}
\label{lem:renyi_cgf_2}
%\lean{}
%\leanok
\uses{def:Renyi}
The cumulant generating function of $\log\frac{d\mu}{d\nu}$ under $\mu$ is $\alpha \mapsto \alpha R_{1+\alpha}(\mu, \nu)$.
\end{lemma}

\begin{proof}
Unfold the definitions.
\end{proof}

\begin{definition}[Conditional Rényi divergence]
\label{def:condRenyi}
%\lean{}
Expand Down
121 changes: 120 additions & 1 deletion blueprint/src/sections/testing.tex
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,109 @@ \section{Generic lower bounds}
The inequality is an application of Lemma~\ref{lem:testing_bound_renyi_mean} for $\alpha = 1/2$. The equality is Lemma~\ref{lem:renyi_half_eq_log_hellinger}.
\end{proof}

\subsection{Lower bounds on the maximum}
\section{Change of measure}

\begin{lemma}
\label{lem:llr_change_measure}
%\lean{}
%\leanok
%\uses{}
Let $\mu, \nu$ be two measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\beta \in \mathbb{R}$. Then
\begin{align*}
\nu(E) e^{\beta} \ge \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} > \beta \right\} \: .
\end{align*}
\end{lemma}

\begin{proof}
\begin{align*}
\nu(E)
&\ge \mu\left[\mathbb{I}(E) e^{- \log\frac{d \mu}{d \nu} }\right]
\\
&\ge \mu\left[\mathbb{I}\left(E \cap \left\{\log\frac{d \mu}{d \nu} \le \beta\right\}\right) e^{- \log\frac{d \mu}{d \nu} }\right]
\\
&\ge e^{- \beta}\mu\left(E \cap \left\{\log\frac{d \mu}{d \nu} \le \beta\right\}\right)
\\
&\ge e^{- \beta}\left( \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} > \beta \right\} \right)
\: .
\end{align*}
\end{proof}

\begin{corollary}
\label{cor:kl_change_measure}
%\lean{}
%\leanok
\uses{def:KL}
Let $\mu, \nu$ be two measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\beta \in \mathbb{R}$. Then
\begin{align*}
\nu(E) e^{\KL(\mu, \nu) + \beta} \ge \mu(E) - \mu\left\{ \log\frac{d \mu}{d \nu} - \KL(\mu, \nu) > \beta \right\} \: .
\end{align*}
\end{corollary}

\begin{proof}
\uses{lem:llr_change_measure}
Use Lemma~\ref{lem:llr_change_measure} with the choice $\KL(\mu, \nu) + \beta$ for $\beta$.
\end{proof}

\begin{lemma}
\label{lem:renyi_change_measure}
%\lean{}
%\leanok
\uses{def:Renyi}
Let $\mu, \nu$ be two measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\alpha,\beta \ge 0$. Then
\begin{align*}
\nu(E) e^{R_{1+\alpha}(\mu, \nu) + \beta} \ge \mu(E) - e^{-\alpha \beta} \: .
\end{align*}
\end{lemma}

\begin{proof}
\uses{lem:llr_change_measure}
Use Lemma~\ref{lem:llr_change_measure} with the choice $R_{1+\alpha}(\mu, \nu) + \beta$ for $\beta$. Then by a Chernoff bound,
\begin{align*}
\mu\left\{ \log\frac{d \mu}{d \nu} - R_{1+\alpha}(\mu, \nu) > \beta \right\}
&= \mu\left\{ \exp\left(\alpha\log\frac{d \mu}{d \nu}\right) > \exp\left(\alpha R_{1+\alpha}(\mu, \nu) + \alpha \beta\right) \right\}
\\
&\le e^{-\alpha R_{1+\alpha}(\mu, \nu) - \alpha \beta} \mu\left[\left(\frac{d \mu}{d \nu}\right)^\alpha \right]
\end{align*}
Then $\mu\left[\left(\frac{d \mu}{d \nu}\right)^\alpha \right] = \nu\left[\left(\frac{d \mu}{d \nu}\right)^{1+\alpha} \right] = e^{\alpha R_{1+\alpha}(\mu, \nu)}$. We obtained
\begin{align*}
\mu\left\{ \log\frac{d \mu}{d \nu} - R_{1+\alpha}(\mu, \nu) > \beta \right\}
\le e^{- \alpha \beta}
\end{align*}
\end{proof}

\begin{lemma}
\label{lem:llr_change_measure_add}
%\lean{}
%\leanok
%\uses{}
Let $\mu, \nu, \xi$ be three probability measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\beta_1, \beta_2 \in \mathbb{R}$. Then
\begin{align*}
\mu(E) e^{\beta_1} + \nu(E^c) e^{\beta_2} \ge 1 - \xi\left\{ \log\frac{d \xi}{d \mu} > \beta_1 \right\} - \xi\left\{ \log\frac{d \xi}{d \nu} > \beta_2 \right\} \: .
\end{align*}
\end{lemma}

\begin{proof}
\uses{lem:llr_change_measure}
Two applications of Lemma~\ref{lem:llr_change_measure}, then sum them and use $\xi(E)+\xi(E^c) = 1$.
\end{proof}

\begin{lemma}
\label{lem:renyi_change_measure_add}
%\lean{}
%\leanok
%\uses{}
Let $\mu, \nu, \xi$ be three probability measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\alpha, \beta \ge 0$. Then
\begin{align*}
\mu(E) e^{R_{1+\alpha}(\xi, \mu) + \beta} + \nu(E^c) e^{R_{1+\alpha}(\xi, \nu) + \beta} \ge 1 - 2 e^{-\alpha \beta} \: .
\end{align*}
\end{lemma}

\begin{proof}
\uses{lem:renyi_change_measure}
\end{proof}


\section{Lower bounds on the maximum}

\begin{lemma}
\label{lem:testing_bound_tv_hellinger_max}
Expand Down Expand Up @@ -97,6 +199,23 @@ \subsection{Lower bounds on the maximum}
Use Lemma~\ref{lem:testing_bound_renyi_mean} and remark that $\mu(E)^\alpha + \nu(E^c)^{1 - \alpha} \le 2\max\{\mu(E), \nu(E^c)\}^{\min\{\alpha, 1 - \alpha\}}$.
\end{proof}


\begin{lemma}
\label{lem:testing_bound_renyi_one_add}
%\lean{}
%\leanok
%\uses{}
Let $\mu, \nu$ be two probability measures on $\mathcal X$ and let $E$ be an event on $\mathcal X$. Let $\alpha > 0$. Then
\begin{align*}
\max\{\mu(E), \nu(E^c)\} \ge \frac{1}{4}\exp\left( - \inf_{\xi \in \mathcal P(\mathcal X)}\max\{R_{1+\alpha}(\xi, \mu), R_{1+\alpha}(\xi, \nu)\} - \frac{\log 4}{\alpha}\right) \: .
\end{align*}
\end{lemma}

\begin{proof}
\uses{lem:renyi_change_measure_add}
\end{proof}


\section{Product spaces}

\begin{corollary}
Expand Down

0 comments on commit 6280c66

Please sign in to comment.