Skip to content

Commit

Permalink
blueprint: kl chain rule proof
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Mar 8, 2024
1 parent 8a25fcc commit 39ec059
Showing 1 changed file with 18 additions and 0 deletions.
18 changes: 18 additions & 0 deletions blueprint/src/sections/kl_divergence.tex
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,24 @@ \section{Chain rule and tensorization}
\end{theorem}

\begin{proof}
\uses{lem:rnDeriv_compProd}
Use Lemma~\ref{lem:rnDeriv_compProd} and Corollary~\ref{cor:rnDeriv_value} in a computation:
\begin{align*}
\KL(\mu \otimes \kappa, \nu \otimes \eta)
&= \int_p \log \frac{d(\mu \otimes \kappa)}{d(\nu \otimes \eta)}(p) \partial (\mu \otimes \kappa)
\\
&= \int_x \int_y\log \left(\frac{d\mu}{d \nu}(x)\frac{d\kappa}{d \eta}(x,y)\right) \partial \kappa(x) \partial\mu
\\
&= \int_x \int_y\log \left(\frac{d\mu}{d \nu}(x)\right) + \log \left(\frac{d\kappa}{d \eta}(x,y)\right) \partial \kappa(x) \partial\mu
\\
&= \int_x \log \left(\frac{d\mu}{d \nu}(x)\right)\partial\mu + \int_y\log \left(\frac{d\kappa}{d \eta}(x,y)\right) \partial \kappa(x) \partial\mu
\\
&= \int_x \log \left(\frac{d\mu}{d \nu}(x)\right)\partial\mu + \int_y\log \left(\frac{d\kappa(x)}{d \eta(x)}(y)\right) \partial \kappa(x) \partial\mu
\\
&= \KL(\mu, \nu) + \KL(\kappa, \eta \mid \mu)
\: .
\end{align*}

\end{proof}

\begin{theorem}[Chain rule, product version]
Expand Down

0 comments on commit 39ec059

Please sign in to comment.