Skip to content

A tool for creating, reading and visualizing Pascal VOC annotations

License

Notifications You must be signed in to change notification settings

Redcof/pascal_voc_tools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Express Pascal Voc Tools

A tool for creating, reading and visualizing Pascal VOC annotations. Report Bugs here

Getting Started

Install

pip install express-pascal-voc-tools

Single file Parsing

from voc_tools import reader as voc_reader

# `from_xml()` parse XML
for anno in voc_reader.from_xml(r"sixray_data\train\Annotations\P00002.xml"):
    print(anno.xmin, anno.xmax)

# `from_image()` Parse XML by providing image path(it will automatically choose the correct XML)
for anno in voc_reader.from_image(r"sixray_data\train\JPEGImages\P00002.jpeg"):
    print(anno.xmin, anno.xmax)

# `from_file()` Get the parsed metadata as a tuple
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.xml"):
    print(anno.raw())
for anno in voc_reader.from_file(r"sixray_data\train\JPEGImages\P00002.jpeg"):
    print(anno.raw())

# `from_dir()` Get the parsed metadata as a tuple for entire directory
for anno in voc_reader.from_dir("sixray_data\train")):
    print(anno.raw())

Dataset level parsing

Using VOCDataset class we can address a Pascal VOC dataset. In general Pascal VOC Datasets are organised as below:

my_dataset
    |
    +- train
    |   |
    |   +- Annotations
    |   |  |
    |   |  +- ITEM001.xml
    |   |  +- ITEM002.xml
    |   +- JPEGImages
    |       |
    |       +- ITEM001.jpeg
    |       +- ITEM002.jpeg
    +- test
        |
        +- Annotations
        |  |
        |  +- ITEM0010.xml
        |  +- ITEM0020.xml
        +- JPEGImages
            |
            +- ITEM0010.jpeg
            +- ITEM0020.jpeg
from voc_tools.utils import VOCDataset

dataset_path = "/my_dataset"

# initialize a dataset
my_dataset = VOCDataset(dataset_path)

# fetch annotation bulk
for annotations, jpeg in my_dataset.train.fetch():
    print(annotations[0].filename, jpeg.image.shape)
# fetch annotation
for anno, jpeg in my_dataset.train.fetch(bulk=False):
    print(anno, jpeg.image.shape)

# parse the annotations into memory for train dataset
my_dataset.train.load()
my_dataset.test.load()

# returns a list of class names in train dataset
my_dataset.train.class_names()
my_dataset.test.class_names()

# save parsed information into csv
my_dataset.train.load().to_csv("./train_metadata.csv")
my_dataset.test.load().to_csv("./train_metadata.csv")

# purge the parsed metadata to free memory
my_dataset.train.unload()
my_dataset.test.unload()

Caption Support

This is an optional feature introduced to facilitate the new trends in prompt engineering and text based Generative AI. In this case the dataset must contain a text directory as below:

my_dataset
    |
    +- train
    |   |
    |   +- Annotations
    |   |  |
    |   |  +- ITEM001.xml
    |   |  +- ITEM002.xml
    |   +- JPEGImages
    |       |
    |       +- ITEM001.jpeg
    |       +- ITEM002.jpeg
    |   +- text
    |       |
    |       +- ITEM001.text
    |       +- ITEM002.text
    +- test
        |
        +- Annotations
        |  |
        |  +- ITEM0010.xml
        |  +- ITEM0020.xml
        +- JPEGImages
            |
            +- ITEM0010.jpeg
            +- ITEM0020.jpeg
        +- text
            |
            +- ITEM0010.text
            +- ITEM0020.text
from voc_tools.utils import VOCDataset

dataset_path = "/my_dataset"
voc_caption_data = VOCDataset(dataset_path, caption_support=True)  # init dataset with caption

# read caption bulk
for captions in voc_caption_data.train.caption.fetch():
    print(captions[0].raw())

# read caption one by one
for caption in voc_caption_data.train.caption.fetch(bulk=False):
    print(caption.raw())
# save captions to a CSV
voc_caption_data.train.caption.to_csv("train_captions.csv")

Visualize

from voc_tools.visulizer import from_jpeg, see_jpeg

jpeg = from_jpeg(r"sixray_data\train\JPEGImages\P00002.jpg")
jpeg.see()
# OR
see_jpeg(r"sixray_data\train\JPEGImages\P00002.jpg")

Load not PascalVOC dataset

import pathlib
from voc_tools.constants import VOC_IMAGES
from voc_tools.reader import list_dir
from voc_tools.utils import Dataset, VOCDataset

dataset = pathlib.Path(r"path/to/dataset")
# set global flags
Dataset.IMAGE_DIR = "images"  # Say, instead of 'JPEGImages', the images are stored in 'images' directory
# reading filepaths
file_paths = list(list_dir(str(dataset / "train"), dir_flag=VOC_IMAGES, fullpath=True))
file_paths.extend(list(list_dir(str(dataset / "test"), dir_flag=VOC_IMAGES, fullpath=True)))

# if you have captions stored in 'captions' directory
voc_data = VOCDataset(dataset, caption_support=True)

Collaborate

GitHub: https://github.com/Redcof/pascal_voc_tools.git

Build and Publish

  1. python setup.py sdist bdist_wheel
  2. python -m twine upload dist/*

About

A tool for creating, reading and visualizing Pascal VOC annotations

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages