Skip to content

Commit

Permalink
feat: generalize the universe levels in SubcategoryEmbedding
Browse files Browse the repository at this point in the history
  • Loading branch information
favonia committed May 27, 2024
1 parent d23e976 commit 0b7e2e0
Showing 1 changed file with 12 additions and 13 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -27,11 +27,10 @@ import Mugen.Order.Reasoning as Reasoning
--------------------------------------------------------------------------------
-- The Universal Embedding Theorem
-- Section 3.4, Lemma 3.9
--
-- Naturality is in a different file

module Mugen.Cat.HierarchyTheory.Universality.SubcategoryEmbedding
{o} (H : Hierarchy-theory o o) {I : Type o} ⦃ Discrete-I : Discrete I ⦄ (Δ₋ : ⌞ I ⌟ Poset o o) where
module Mugen.Cat.HierarchyTheory.Universality.SubcategoryEmbedding {o o' r}
(H : Hierarchy-theory (o ⊔ o') (r ⊔ o')) {I : Type o'} ⦃ Discrete-I : Discrete I ⦄
(Δ₋ : ⌞ I ⌟ Poset (o ⊔ o') (r ⊔ o')) where

--------------------------------------------------------------------------------
-- Notation
Expand All @@ -41,30 +40,30 @@ module Mugen.Cat.HierarchyTheory.Universality.SubcategoryEmbedding
private
open Strictly-monotone
open Algebra-hom
open Cat (Strict-orders o o)
open Cat (Strict-orders (o ⊔ o') (r ⊔ o'))
module Δ₋ i = Poset (Δ₋ i)
module H = Monad H

⌞Δ₋⌟ : I Type o
⌞Δ₋⌟ : I Type (o ⊔ o')
⌞Δ₋⌟ i = ⌞ Δ₋ i ⌟

abstract instance 
H-Level-I : H-Level I 2
H-Level-I = hlevel-instance $ Discrete→is-set Discrete-I

Δ : Poset o o
Δ : Poset (o ⊔ o') (r ⊔ o')
Δ = Copower (el! Nat) (Disjoint (el! I) Δ₋)
module Δ = Poset Δ

H⟨Δ⟩ : Poset o o
H⟨Δ⟩ : Poset (o ⊔ o') (r ⊔ o')
H⟨Δ⟩ = H.M₀ Δ
module H⟨Δ⟩ = Reasoning H⟨Δ⟩

SOrd : Precategory (lsuc o) o
SOrd = Strict-orders o o
SOrd : Precategory (lsuc (o ⊔ r ⊔ o')) (o ⊔ r ⊔ o')
SOrd = Strict-orders (o ⊔ o') (r ⊔ o')
module SOrd = Cat SOrd

SOrdᴴ : Precategory (lsuc o) (lsuc o)
SOrdᴴ : Precategory (lsuc (o ⊔ r ⊔ o')) (lsuc (o ⊔ r ⊔ o'))
SOrdᴴ = Eilenberg-Moore SOrd H
module SOrdᴴ = Cat SOrdᴴ

Expand All @@ -74,10 +73,10 @@ module Mugen.Cat.HierarchyTheory.Universality.SubcategoryEmbedding
Fᴴ : Functor SOrd SOrdᴴ
Fᴴ = Free SOrd H

Fᴴ₀ : Poset o o Algebra SOrd H
Fᴴ₀ : Poset (o ⊔ o') (r ⊔ o') Algebra SOrd H
Fᴴ₀ = Fᴴ .Functor.F₀

Fᴴ₁ : {X Y : Poset o o} Hom X Y SOrdᴴ.Hom (Fᴴ₀ X) (Fᴴ₀ Y)
Fᴴ₁ : {X Y : Poset (o ⊔ o') (r ⊔ o')} Hom X Y SOrdᴴ.Hom (Fᴴ₀ X) (Fᴴ₀ Y)
Fᴴ₁ = Fᴴ .Functor.F₁

FᴴΔ₋ : I Algebra SOrd H
Expand Down

0 comments on commit 0b7e2e0

Please sign in to comment.