-
-
Notifications
You must be signed in to change notification settings - Fork 370
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor(rapidocr_paddle): Refactor the entire code
- Loading branch information
Showing
9 changed files
with
257 additions
and
388 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,34 +14,21 @@ | |
# -*- encoding: utf-8 -*- | ||
# @Author: SWHL | ||
# @Contact: [email protected] | ||
import argparse | ||
import time | ||
from typing import Any, Dict, Optional, Tuple | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
from rapidocr_paddle.utils import PaddleInferSession, read_yaml | ||
from rapidocr_paddle.utils import PaddleInferSession | ||
|
||
from .utils import DBPostProcess, create_operators, transform | ||
from .utils import DBPostProcess, DetPreProcess | ||
|
||
|
||
class TextDetector: | ||
def __init__(self, config): | ||
pre_process_list = { | ||
"DetResizeForTest": { | ||
"limit_side_len": config.get("limit_side_len", 736), | ||
"limit_type": config.get("limit_type", "min"), | ||
}, | ||
"NormalizeImage": { | ||
"std": [0.229, 0.224, 0.225], | ||
"mean": [0.485, 0.456, 0.406], | ||
"scale": "1./255.", | ||
"order": "hwc", | ||
}, | ||
"ToCHWImage": None, | ||
"KeepKeys": {"keep_keys": ["image", "shape"]}, | ||
} | ||
self.preprocess_op = create_operators(pre_process_list) | ||
def __init__(self, config: Dict[str, Any]): | ||
limit_side_len = config.get("limit_side_len", 736) | ||
limit_type = config.get("limit_type", "min") | ||
self.preprocess_op = DetPreProcess(limit_side_len, limit_type) | ||
|
||
post_process = { | ||
"thresh": config.get("thresh", 0.3), | ||
|
@@ -55,31 +42,41 @@ def __init__(self, config): | |
|
||
self.infer = PaddleInferSession(config) | ||
|
||
def __call__(self, img): | ||
def __call__(self, img: np.ndarray) -> Tuple[Optional[np.ndarray], float]: | ||
start_time = time.perf_counter() | ||
|
||
if img is None: | ||
raise ValueError("img is None") | ||
|
||
ori_im_shape = img.shape[:2] | ||
|
||
data = {"image": img} | ||
data = transform(data, self.preprocess_op) | ||
img, shape_list = data | ||
if img is None: | ||
ori_img_shape = img.shape[0], img.shape[1] | ||
prepro_img = self.preprocess_op(img) | ||
if prepro_img is None: | ||
return None, 0 | ||
|
||
img = np.expand_dims(img, axis=0).astype(np.float32) | ||
shape_list = np.expand_dims(shape_list, axis=0) | ||
preds = self.infer(prepro_img)[0] | ||
dt_boxes, dt_boxes_scores = self.postprocess_op(preds, ori_img_shape) | ||
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_img_shape) | ||
elapse = time.perf_counter() - start_time | ||
return dt_boxes, elapse | ||
|
||
starttime = time.time() | ||
preds = self.infer(img)[0] | ||
post_result = self.postprocess_op(preds, shape_list) | ||
def filter_tag_det_res( | ||
self, dt_boxes: np.ndarray, image_shape: Tuple[int, int] | ||
) -> np.ndarray: | ||
img_height, img_width = image_shape | ||
dt_boxes_new = [] | ||
for box in dt_boxes: | ||
box = self.order_points_clockwise(box) | ||
box = self.clip_det_res(box, img_height, img_width) | ||
|
||
dt_boxes = post_result[0]["points"] | ||
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im_shape) | ||
elapse = time.time() - starttime | ||
return dt_boxes, elapse | ||
rect_width = int(np.linalg.norm(box[0] - box[1])) | ||
rect_height = int(np.linalg.norm(box[0] - box[3])) | ||
if rect_width <= 3 or rect_height <= 3: | ||
continue | ||
|
||
dt_boxes_new.append(box) | ||
return np.array(dt_boxes_new) | ||
|
||
def order_points_clockwise(self, pts): | ||
def order_points_clockwise(self, pts: np.ndarray) -> np.ndarray: | ||
""" | ||
reference from: | ||
https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py | ||
|
@@ -104,42 +101,10 @@ def order_points_clockwise(self, pts): | |
rect = np.array([tl, tr, br, bl], dtype="float32") | ||
return rect | ||
|
||
def clip_det_res(self, points, img_height, img_width): | ||
def clip_det_res( | ||
self, points: np.ndarray, img_height: int, img_width: int | ||
) -> np.ndarray: | ||
for pno in range(points.shape[0]): | ||
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | ||
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | ||
return points | ||
|
||
def filter_tag_det_res(self, dt_boxes, image_shape): | ||
img_height, img_width = image_shape[:2] | ||
dt_boxes_new = [] | ||
for box in dt_boxes: | ||
box = self.order_points_clockwise(box) | ||
box = self.clip_det_res(box, img_height, img_width) | ||
rect_width = int(np.linalg.norm(box[0] - box[1])) | ||
rect_height = int(np.linalg.norm(box[0] - box[3])) | ||
if rect_width <= 3 or rect_height <= 3: | ||
continue | ||
dt_boxes_new.append(box) | ||
dt_boxes = np.array(dt_boxes_new) | ||
return dt_boxes | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--config_path", type=str, default="config.yaml") | ||
parser.add_argument("--image_path", type=str, default=None) | ||
args = parser.parse_args() | ||
|
||
config = read_yaml(args.config_path) | ||
|
||
text_detector = TextDetector(config) | ||
|
||
img = cv2.imread(args.image_path) | ||
dt_boxes, elapse = text_detector(img) | ||
|
||
from utils import draw_text_det_res | ||
|
||
src_im = draw_text_det_res(dt_boxes, args.image_path) | ||
cv2.imwrite("det_results.jpg", src_im) | ||
print("The det_results.jpg has been saved in the current directory.") |
Oops, something went wrong.