Skip to content

Commit

Permalink
Hip tensor permute (#1002)
Browse files Browse the repository at this point in the history
* adding files for F32 example

* adding functioning implementation with scalar multiplication and unary operator support

* added fp 16 type check in unary square

* updating scalar multiplication as an operator

* functioning version with scalar operator

* changing strides for col major

* updated column major implementation

* working column major implementation

* cleaned up comments, rearranged/renamed files
  • Loading branch information
arai713 authored Nov 13, 2023
1 parent 600fc00 commit 454cf7b
Show file tree
Hide file tree
Showing 9 changed files with 1,175 additions and 2 deletions.
4 changes: 4 additions & 0 deletions example/44_elementwise_permute/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,8 @@
add_example_executable(example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp)
add_example_executable(example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp)
add_example_executable(example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp)
add_example_executable(example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp)
add_example_executable(example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp)
add_example_executable(example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp)
add_example_executable(example_elementwise_permute elementwise_permute.cpp)
add_example_executable(example_elementwise_permute_3d elementwise_permute_3d.cpp)
149 changes: 149 additions & 0 deletions example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
#include <iostream>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"

#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

using F16 = ck::half_t;
using F32 = float;

using ADataType = F16;
using BDataType = F16;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq

template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
std::size_t N = A_nchw.mDesc.GetLengths()[0];
std::size_t C = A_nchw.mDesc.GetLengths()[1];
std::size_t H = A_nchw.mDesc.GetLengths()[2];
std::size_t W = A_nchw.mDesc.GetLengths()[3];
for(std::size_t w = 0; w < W; ++w)
for(std::size_t h = 0; h < H; ++h)
for(std::size_t c = 0; c < C; ++c)
for(std::size_t n = 0; n < N; ++n)
{
ADataType tmp_val;
// auto a_val = A_nchw(n, c, h, w);
auto a_val = A_nchw.mData[(n) + (c * N) + (h * C * N) + (w * H * C * N)];
functor_b(tmp_val, a_val);
// functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
functor_a(B_nhwc.mData[(n) + (c * W * H * N) + (h * N) + (w * H * N)],
scale * tmp_val);
}
}

int main()
{
bool do_verification = true;
bool time_kernel = true;

std::vector<std::size_t> nchw = {4, 2, 1, 8};
std::vector<std::size_t> nhwc = {4, 1, 8, 2};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
float scale = 1.f;
auto i = 0;
for(std::size_t w = 0; w < a.mDesc.GetLengths()[3]; ++w)
for(std::size_t h = 0; h < a.mDesc.GetLengths()[2]; ++h)
for(std::size_t c = 0; c < a.mDesc.GetLengths()[1]; ++c)
for(std::size_t n = 0; n < a.mDesc.GetLengths()[0]; ++n)
{
a.mData[(n * nchw[1] * nchw[2] * nchw[3]) + (c * nchw[2] * nchw[3]) +
(h * nchw[3]) + w] = i;
i++;
}

DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());

a_device_buf.ToDevice(a.mData.data());

std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};

std::array<ck::index_t, 4> ab_lengths;

std::array<ck::index_t, 4> a_strides = {1,
static_cast<int>(nchw[0]),
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])};

std::array<ck::index_t, 4> b_strides = {1,
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]),
static_cast<int>(nhwc[0]),
static_cast<int>(nhwc[0] * nhwc[1])};
ck::ranges::copy(nchw, ab_lengths.begin());

auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});

if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};

std::cout << "A (nchw): " << a.mDesc << std::endl;
std::cout << "B (nhwc): " << b.mDesc << std::endl;

auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * nchw[0] * nchw[1] * nchw[2] * nchw[3];

std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);

float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

float gb_per_sec = num_btype / 1.E6 / ave_time;

std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;

bool pass = true;

if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);

pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}

return pass ? 0 : 1;
}
132 changes: 132 additions & 0 deletions example/44_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
#include <iostream>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"

#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

using F16 = ck::half_t;
using F32 = float;

using ADataType = F16;
using BDataType = F16;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq

template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
for(std::size_t n = 0; n < A_nchw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_nchw.mDesc.GetLengths()[1]; ++c)
for(std::size_t h = 0; h < A_nchw.mDesc.GetLengths()[2]; ++h)
for(std::size_t w = 0; w < A_nchw.mDesc.GetLengths()[3]; ++w)
{
ADataType tmp_val;
auto a_val = A_nchw(n, c, h, w);
functor_b(tmp_val, a_val);
functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
}
}

int main()
{
bool do_verification = true;
bool time_kernel = true;

std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 128};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
float scale = 2.f;
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});

DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());

a_device_buf.ToDevice(a.mData.data());

std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};

std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
static_cast<int>(nchw[2] * nchw[3]),
static_cast<int>(nchw[3]),
1};
std::array<ck::index_t, 4> b_strides = {static_cast<int>(nhwc[1] * nhwc[2] * nhwc[3]),
1,
static_cast<int>(nhwc[2] * nhwc[3]),
static_cast<int>(nhwc[3])};

ck::ranges::copy(nchw, ab_lengths.begin());

auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});

if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};

std::cout << "A (nchw): " << a.mDesc << std::endl;
std::cout << "B (nhwc): " << b.mDesc << std::endl;

auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * nchw[0] * nchw[1] * nchw[2] * nchw[3];

std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);

float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

float gb_per_sec = num_btype / 1.E6 / ave_time;

std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;

bool pass = true;

if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);

pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}

return pass ? 0 : 1;
}
Loading

0 comments on commit 454cf7b

Please sign in to comment.