forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Implement dataloader for VnDT * Add utility to impute missing sent_id and text fields from CoNLL files * Fix imputed outputs --------- Co-authored-by: Railey Montalan <[email protected]>
- Loading branch information
1 parent
b4a3c27
commit 94bc96a
Showing
3 changed files
with
258 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import typing as T | ||
|
||
from conllu.exceptions import ParseException | ||
from conllu.models import Metadata, TokenList | ||
from conllu.parser import (DEFAULT_FIELD_PARSERS, DEFAULT_FIELDS, | ||
_FieldParserType, _MetadataParserType, | ||
parse_comment_line, parse_line) | ||
|
||
imputed_sent_id: int = 1 | ||
|
||
|
||
def parse_token_and_impute_metadata(data: str, fields: T.Optional[T.Sequence[str]] = None, field_parsers: T.Optional[T.Dict[str, _FieldParserType]] = None, metadata_parsers: T.Optional[T.Dict[str, _MetadataParserType]] = None) -> TokenList: | ||
""" | ||
Overrides conllu.parse_token_and_metadata via monkey patching. | ||
This function imputes the following metadata, if these are not found in the .conllu file: | ||
- sent_id (int): an integer identifier for each sentence. | ||
- text (str): a concatenated string of token forms. This assumes that all token forms | ||
are separated with an empty space ' ', and does not consider the `SpaceAfter` field. | ||
""" | ||
|
||
if not data: | ||
raise ParseException("Can't create TokenList, no data sent to constructor.") | ||
|
||
fields = fields or DEFAULT_FIELDS | ||
global imputed_sent_id | ||
|
||
if not field_parsers: | ||
field_parsers = DEFAULT_FIELD_PARSERS.copy() | ||
elif sorted(field_parsers.keys()) != sorted(fields): | ||
new_field_parsers = DEFAULT_FIELD_PARSERS.copy() | ||
new_field_parsers.update(field_parsers) | ||
field_parsers = new_field_parsers | ||
|
||
tokens = [] | ||
metadata = Metadata() | ||
|
||
for line in data.split('\n'): | ||
line = line.strip() | ||
|
||
if not line: | ||
continue | ||
|
||
if line.startswith('#'): | ||
pairs = parse_comment_line(line, metadata_parsers=metadata_parsers) | ||
for key, value in pairs: | ||
metadata[key] = value | ||
|
||
else: | ||
tokens.append(parse_line(line, fields, field_parsers)) | ||
|
||
if 'sent_id' not in metadata: | ||
metadata['sent_id'] = str(imputed_sent_id) | ||
imputed_sent_id += 1 | ||
|
||
if 'text' not in metadata: | ||
imputed_text = "" | ||
for token in tokens: | ||
imputed_text += str(token['form']) + " " | ||
metadata['text'] = imputed_text | ||
|
||
return TokenList(tokens, metadata, default_fields=fields) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import conllu | ||
import datasets | ||
|
||
from seacrowd.sea_datasets.vndt.utils import parse_token_and_impute_metadata | ||
from seacrowd.utils import schemas | ||
from seacrowd.utils.common_parser import (load_ud_data, | ||
load_ud_data_as_seacrowd_kb) | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@InProceedings{Nguyen2014NLDB, | ||
author = {Nguyen, Dat Quoc and Nguyen, Dai Quoc and Pham, Son Bao and Nguyen, Phuong-Thai and Nguyen, Minh Le}, | ||
title = {{From Treebank Conversion to Automatic Dependency Parsing for Vietnamese}}, | ||
booktitle = {{Proceedings of 19th International Conference on Application of Natural Language to Information Systems}}, | ||
year = {2014}, | ||
pages = {196-207}, | ||
url = {https://github.com/datquocnguyen/VnDT}, | ||
} | ||
""" | ||
|
||
_DATASETNAME = "vndt" | ||
|
||
_DESCRIPTION = """\ | ||
VnDT is a Vietnamese dependency treebank, consisting of 10K+ sentences (219k words). The VnDT Treebank is automatically | ||
converted from the input Vietnamese Treebank. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/datquocnguyen/VnDT" | ||
|
||
_LANGUAGES = {"vie": "vi"} | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = False | ||
|
||
_URLS = { | ||
"gold-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-dev.conll", | ||
"gold-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-test.conll", | ||
"gold-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-gold-POS-tags-train.conll", | ||
"predicted-dev": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-dev.conll", | ||
"predicted-test": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-test.conll", | ||
"predicted-train": "https://raw.githubusercontent.com/datquocnguyen/VnDT/master/VnDTv1.1-predicted-POS-tags-train.conll", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
class VnDTDataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
VnDT is a Vietnamese dependency treebank from https://github.com/datquocnguyen/VnDT. | ||
""" | ||
|
||
# Override conllu.parse_token_and_metadata via monkey patching | ||
conllu.parse_token_and_metadata = parse_token_and_impute_metadata | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_gold_source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} gold standard source schema", | ||
schema="source", | ||
subset_id="gold", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_gold_seacrowd_kb", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} gold standard SEACrowd schema", | ||
schema="seacrowd_kb", | ||
subset_id="gold", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_predicted_source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} predicted source schema", | ||
schema="source", | ||
subset_id="predicted", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_predicted_seacrowd_kb", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} predicted SEACrowd schema", | ||
schema="seacrowd_kb", | ||
subset_id="predicted", | ||
), | ||
] | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Sequence(datasets.Value("int8")), | ||
"form": datasets.Sequence(datasets.Value("string")), | ||
"lemma": datasets.Sequence(datasets.Value("string")), | ||
"upos": datasets.Sequence(datasets.Value("string")), | ||
"xpos": datasets.Sequence(datasets.Value("string")), | ||
"feats": datasets.Sequence(datasets.Value("string")), | ||
"head": datasets.Sequence(datasets.Value("int8")), | ||
"deprel": datasets.Sequence(datasets.Value("string")), | ||
"deps": datasets.Sequence(datasets.Value("string")), | ||
"misc": datasets.Sequence(datasets.Value("string")), | ||
} | ||
) | ||
elif self.config.schema == "seacrowd_kb": | ||
features = schemas.kb_features | ||
else: | ||
raise ValueError(f"Invalid schema: '{self.config.schema}'") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
""" | ||
Returns SplitGenerators. | ||
""" | ||
|
||
paths = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()} | ||
|
||
if self.config.subset_id == "gold": | ||
filtered_paths = {key: value for key, value in paths.items() if "gold" in key} | ||
elif self.config.subset_id == "predicted": | ||
filtered_paths = {key: value for key, value in paths.items() if "predicted" in key} | ||
else: | ||
raise NotImplementedError(f"Invalid subset: '{self.config.subset_id}'.") | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepaths": [value for key, value in filtered_paths.items() if "dev" in key], | ||
"split": "validation", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepaths": [value for key, value in filtered_paths.items() if "test" in key], | ||
"split": "test", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepaths": [value for key, value in filtered_paths.items() if "train" in key], | ||
"split": "train", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]: | ||
""" | ||
Yields examples as (key, example) tuples. | ||
""" | ||
|
||
dataset = None | ||
for file in filepaths: | ||
if self.config.schema == "source": | ||
dataset = list(load_ud_data(file)) | ||
elif self.config.schema == "seacrowd_kb": | ||
dataset = list(load_ud_data_as_seacrowd_kb(file, dataset)) | ||
else: | ||
raise ValueError(f"Invalid config: '{self.config.name}'") | ||
|
||
for idx, example in enumerate(dataset): | ||
if self.config.schema == "source": | ||
example.pop('sent_id', None) | ||
example.pop('text', None) | ||
yield idx, example |