forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: dataloader for text2text MT * nitpick: block sp2t to pass tc for t2t task * nitpick join * feat: support sptext, sptext_translated * feat: final alorese_source code * chore: scrape entire URLs * nitpick * nitpick: config builder naming * fix: nitpick naming a bit * nitpick PR: formatting, abs import, invalid schema handler * docs: add docstring scraping approach * fix: add URL scrape timestamp, revise code formatting, citation * nitpick year * nitpick review * fix: revise schema and remove subset * nitpick formatting * Update seacrowd/sea_datasets/alorese/alorese.py Co-authored-by: Salsabil Maulana Akbar <[email protected]> * Update alorese.py fix formatting on `yield` of `_generate_examples`
- Loading branch information
1 parent
29ca64b
commit 42d6285
Showing
3 changed files
with
984 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,259 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres | ||
ranging from Experiment or task, Stimuli, Discourse, and Written materials. | ||
""" | ||
import xml.etree.ElementTree as ET | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.sea_datasets.alorese.alorese_url import _URLS_DICT | ||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{Moro2018-ms, | ||
title = "The plural word hire in alorese: Contact-induced change from | ||
neighboring Alor-pantar languages", | ||
author = "Moro, Francesca R", | ||
journal = "Oceanic Linguistics", | ||
publisher = "University of Hawai'i Press", | ||
volume = 57, | ||
number = 1, | ||
pages = "177--198", | ||
year = 2018, | ||
language = "en" | ||
} | ||
""" | ||
|
||
_DATASETNAME = "alorese" | ||
_DESCRIPTION = """\ | ||
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres | ||
ranging from Experiment or task, Stimuli, Discourse, and Written materials. | ||
""" | ||
_HOMEPAGE = "https://hdl.handle.net/1839/e10d7de5-0a6d-4926-967b-0a8cc6d21fb1" | ||
_LANGUAGES = ["aol", "ind"] | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_LOCAL = False | ||
|
||
_URLS = _URLS_DICT | ||
|
||
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.MACHINE_TRANSLATION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class AloreseDataset(datasets.GeneratorBasedBuilder): | ||
"""Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres ranging | ||
from Experiment or task, Stimuli, Discourse, and Written materials.""" | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}" | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_t2t", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd for text2text schema", | ||
schema="seacrowd_t2t", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_sptext", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd for sptext schema", | ||
schema="seacrowd_sptext", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"nr": datasets.Value("int64"), | ||
"media_id": datasets.Value("string"), | ||
"speaker_id": datasets.Value("string"), | ||
"audio": datasets.Audio(sampling_rate=16000), | ||
"annotation_aol": datasets.Value("string"), | ||
"annotation_ind": datasets.Value("string"), | ||
"begin_time": datasets.Value("int64"), | ||
"end_time": datasets.Value("int64"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_sptext": | ||
features = schemas.speech_text_features | ||
|
||
elif self.config.schema == "seacrowd_t2t": | ||
features = schemas.text2text_features | ||
|
||
else: | ||
raise ValueError(f"Invalid config schema: {self.config.schema}") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
|
||
if self.config.schema == "seacrowd_t2t": | ||
filepath = {k: v["text_path"] for k, v in _URLS.items()} | ||
paths = dl_manager.download(filepath) | ||
else: | ||
paths = dl_manager.download(_URLS) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": paths, | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath) -> Tuple[int, Dict]: | ||
|
||
if self.config.schema == "source": | ||
source_df = self._get_source_df(filepath) | ||
|
||
for k, row in source_df.iterrows(): | ||
yield k, { | ||
"nr": k + 1, | ||
"media_id": row["media_id"], | ||
"speaker_id": row["speaker_id"], | ||
"audio": row["audio_path"], | ||
"annotation_aol": row["annotation_aol"], | ||
"annotation_ind": row["annotation_ind"], | ||
"begin_time": row["begin_time"], | ||
"end_time": row["end_time"], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_t2t": | ||
caption_df = self._merge_text_dfs(filepath) | ||
|
||
for k, row in caption_df.iterrows(): | ||
yield k, { | ||
"id": k + 1, | ||
"text_1": row["annotation_aol"], | ||
"text_2": row["annotation_ind"], | ||
"text_1_name": _LANGUAGES[0], | ||
"text_2_name": _LANGUAGES[1], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_sptext": | ||
sptext_df = self._get_sptext_df(filepath) | ||
|
||
for k, row in sptext_df.iterrows(): | ||
yield k, { | ||
"id": k + 1, | ||
"path": row["audio_path"], | ||
"audio": row["audio_path"], | ||
"text": row["annotation_aol"], | ||
"speaker_id": row["speaker_id"], | ||
"metadata": { | ||
"speaker_age": None, | ||
"speaker_gender": None | ||
}} | ||
|
||
def _get_time_df(self, xml_tree) -> pd.DataFrame: | ||
time_slot_values = [(time_slot.attrib["TIME_SLOT_ID"], int(time_slot.attrib["TIME_VALUE"])) for time_slot in xml_tree.iter(tag="TIME_SLOT")] | ||
|
||
return pd.DataFrame({"time_slot_id": [v[0] for v in time_slot_values], "time_value": [v[1] for v in time_slot_values]}) | ||
|
||
def _get_aol_annotations(self, xml_tree) -> pd.DataFrame: | ||
aol_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["TIME_SLOT_REF1"], annotation.attrib["TIME_SLOT_REF2"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="ALIGNABLE_ANNOTATION")] | ||
|
||
return pd.DataFrame({"annotation_id": [v[0] for v in aol_annotations], "time_slot_ref1": [v[1] for v in aol_annotations], "time_slot_ref2": [v[2] for v in aol_annotations], "annotation_value": [v[3] for v in aol_annotations]}) | ||
|
||
def _get_ind_annotations(self, xml_tree) -> pd.DataFrame: | ||
ind_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["ANNOTATION_REF"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="REF_ANNOTATION")] | ||
|
||
return pd.DataFrame({"annotation_id": [v[0] for v in ind_annotations], "annotation_ref_id": [v[1] for v in ind_annotations], "annotation_value": [v[2] for v in ind_annotations]}) | ||
|
||
def _get_text_df(self, xml_tree) -> pd.DataFrame: | ||
time_df = self._get_time_df(xml_tree) | ||
aol_df = self._get_aol_annotations(xml_tree) | ||
ind_df = self._get_ind_annotations(xml_tree) | ||
|
||
df1 = aol_df.merge(time_df, left_on="time_slot_ref1", right_on="time_slot_id", how="left").rename(columns={"time_value": "begin_time", "annotation_value": "annotation_aol"}).drop(columns=["time_slot_ref1", "time_slot_id"]) | ||
df2 = df1.merge(time_df, left_on="time_slot_ref2", right_on="time_slot_id", how="left").rename(columns={"time_value": "end_time"}).drop(columns=["time_slot_ref2", "time_slot_id"]) | ||
final_df = df2.merge(ind_df, left_on="annotation_id", right_on="annotation_ref_id", how="left").rename(columns={"annotation_value": "annotation_ind"}).drop(columns=["annotation_ref_id", "annotation_id_y", "annotation_id_x"]) | ||
|
||
return final_df[["annotation_aol", "annotation_ind", "begin_time", "end_time"]] | ||
|
||
def _merge_text_dfs(self, xml_dict) -> pd.DataFrame: | ||
final_df = pd.DataFrame() | ||
len_tracker = [] | ||
media_ids = [] | ||
|
||
xml_trees = [ET.parse(xml_path) for xml_path in xml_dict.values()] | ||
for xml_tree in xml_trees: | ||
cur_df = self._get_text_df(xml_tree) | ||
final_df = pd.concat([final_df, cur_df], axis=0) | ||
len_tracker.append(len(cur_df)) | ||
|
||
media_id_list = list(xml_dict.keys()) | ||
for i in range(len(len_tracker)): | ||
media_ids.extend([media_id_list[i]] * len_tracker[i]) | ||
|
||
final_df["media_id"] = media_ids | ||
|
||
return final_df.reset_index() | ||
|
||
def _groupby_caption_by_media_ids(self, caption_df: pd.DataFrame) -> pd.DataFrame: | ||
caption_df = ( | ||
caption_df.groupby("media_id") | ||
.agg({"annotation_aol": lambda x: " ".join([str(value) if value is not None else "<NONE>" for value in x]), "annotation_ind": lambda x: " ".join([str(value) if value is not None else "<NONE>" for value in x])}) | ||
.reset_index() | ||
) | ||
return caption_df | ||
|
||
def _get_sptext_df(self, complete_dict) -> pd.DataFrame: | ||
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()} | ||
|
||
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]}) | ||
caption_df = self._groupby_caption_by_media_ids(self._merge_text_dfs(xml_dict)) | ||
|
||
df = caption_df.merge(audio_df, on="media_id", how="inner") | ||
|
||
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind"]] | ||
|
||
def _get_source_df(self, complete_dict) -> pd.DataFrame: | ||
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()} | ||
|
||
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]}) | ||
text_df = self._merge_text_dfs(xml_dict) | ||
|
||
df = text_df.merge(audio_df, on="media_id", how="inner") | ||
|
||
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind", "begin_time", "end_time"]] |
Oops, something went wrong.