Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPSCI Export&Infer No.23】viv #832

Merged
merged 6 commits into from
Apr 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions docs/zh/examples/viv.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,18 @@
python viv.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/viv/viv_pretrained.pdparams
```

=== "模型导出命令"

``` sh
python viv.py mode=export
```

=== "模型推理命令"

``` sh
python viv.py mode=infer
```

| 预训练模型 | 指标 |
|:--| :--|
| [viv_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/aneurysm/viv_pretrained.pdparams)<br>[viv_pretrained.pdeqn](https://paddle-org.bj.bcebos.com/paddlescience/models/aneurysm/viv_pretrained.pdeqn) | 'eta': 1.1416150300647132e-06<br>'f': 4.635014192899689e-06 |
Expand Down
22 changes: 22 additions & 0 deletions examples/fsi/conf/viv.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ hydra:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- INFER.pretrained_model_path
- INFER.export_path
- mode
- output_dir
- log_freq
Expand Down Expand Up @@ -60,3 +62,23 @@ TRAIN:
EVAL:
pretrained_model_path: null
batch_size: 32

# inference settings
INFER:
pretrained_model_path: "https://paddle-org.bj.bcebos.com/paddlescience/models/viv/viv_pretrained.pdparams"
export_path: ./inference/viv
pdmodel_path: ${INFER.export_path}.pdmodel
pdpiparams_path: ${INFER.export_path}.pdiparams
input_keys: ${MODEL.input_keys}
output_keys: ["eta", "f"]
device: gpu
engine: native
precision: fp32
onnx_path: ${INFER.export_path}.onnx
ir_optim: true
min_subgraph_size: 10
gpu_mem: 4000
gpu_id: 0
max_batch_size: 64
num_cpu_threads: 4
batch_size: 16
76 changes: 75 additions & 1 deletion examples/fsi/viv.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,14 +200,88 @@ def evaluate(cfg: DictConfig):
solver.visualize()


def export(cfg: DictConfig):
from paddle import nn
from paddle.static import InputSpec

# set model
model = ppsci.arch.MLP(**cfg.MODEL)
# initialize equation
equation = {"VIV": ppsci.equation.Vibration(2, -4, 0)}
# initialize solver
solver = ppsci.solver.Solver(
model,
equation=equation,
pretrained_model_path=cfg.INFER.pretrained_model_path,
)
# Convert equation to func
f_func = ppsci.lambdify(
solver.equation["VIV"].equations["f"],
solver.model,
list(solver.equation["VIV"].learnable_parameters),
)

class Wrapped_Model(nn.Layer):
def __init__(self, model, func):
super().__init__()
self.model = model
self.func = func

def forward(self, x):
model_out = self.model(x)
func_out = self.func(x)
return {**model_out, "f": func_out}

solver.model = Wrapped_Model(model, f_func)
# export models
input_spec = [
{key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys},
]
solver.export(input_spec, cfg.INFER.export_path, skip_prune_program=True)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor

# set model predictor
predictor = pinn_predictor.PINNPredictor(cfg)

infer_mat = ppsci.utils.reader.load_mat_file(
cfg.VIV_DATA_PATH,
("t_f", "eta_gt", "f_gt"),
alias_dict={"eta_gt": "eta", "f_gt": "f"},
)

input_dict = {key: infer_mat[key] for key in cfg.INFER.input_keys}

output_dict = predictor.predict(input_dict, cfg.INFER.batch_size)

# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.INFER.output_keys, output_dict.keys())
}
infer_mat.update(output_dict)

ppsci.visualize.plot.save_plot_from_1d_dict(
"./viv_pred", infer_mat, ("t_f",), ("eta", "eta_gt", "f", "f_gt")
)


@hydra.main(version_base=None, config_path="./conf", config_name="viv.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion ppsci/utils/symbolic.py
Original file line number Diff line number Diff line change
Expand Up @@ -490,7 +490,7 @@ class ComposedNode(nn.Layer):
def __init__(self, callable_nodes: List[Node]):
super().__init__()
assert len(callable_nodes)
self.callable_nodes = callable_nodes
self.callable_nodes = nn.LayerList(callable_nodes)

def forward(self, data_dict: DATA_DICT) -> paddle.Tensor:
# call all callable_nodes in order
Expand Down