Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add Op UnitTest for batchnorm #1503

Merged
merged 22 commits into from
Jun 25, 2023
Merged
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
223 changes: 118 additions & 105 deletions python/tests/ops/test_batch_norm_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,60 +30,66 @@ def setUp(self):
self.init_case()

def init_case(self):
self.num_channels = 16
self.inputs = {
self.inputs = [{
"x":
self.random([2, self.num_channels, 8, 8], "float32", 0.0, 1.0),
self.random([2, 16, 8, 8], "float32", 0.0, 1.0),
"dout":
self.random([2, self.num_channels, 8, 8], "float32", 1e-7, 1e-6),
}
self.random([2, 16, 8, 8], "float32", 1e-7, 1e-6),
"num_channels":
16
}]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"])
batch_norm = paddle.nn.BatchNorm(
self.num_channels, act=None, is_test=False)
out = batch_norm(x)
for inputs in self.inputs:
x = paddle.to_tensor(inputs["x"])
batch_norm = paddle.nn.BatchNorm(
inputs["num_channels"], act=None, is_test=False)
out = batch_norm(x)

self.paddle_outputs = [out]
self.paddle_outputs.append(out)

# Note: If the forward and backward operators are run in the same program,
# the forward result will be incorrect.
def build_cinn_program(self, target):
builder = NetBuilder("batch_norm")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
scale = builder.fill_constant([self.num_channels], 1.0, 'scale',
'float32')
bias = builder.fill_constant([self.num_channels], 0.0, 'bias',
'float32')
mean = builder.fill_constant([self.num_channels], 0.0, 'mean',
'float32')
variance = builder.fill_constant([self.num_channels], 1.0, 'variance',
'float32')

out = builder.batchnorm(x, scale, bias, mean, variance, is_test=False)

prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [self.inputs["x"]], out, passes=[])
self.cinn_outputs = [forward_res[0]]
for inputs in self.inputs:
builder = NetBuilder("batch_norm")
x = builder.create_input(
self.nptype2cinntype(inputs["x"].dtype), inputs["x"].shape,
"x")
scale = builder.fill_constant([inputs["num_channels"]], 1.0,
'scale', "float32")
bias = builder.fill_constant([inputs["num_channels"]], 0.0, 'bias',
"float32")
mean = builder.fill_constant([inputs["num_channels"]], 0.0, 'mean',
"float32")
variance = builder.fill_constant([inputs["num_channels"]], 1.0,
'variance', "float32")

out = builder.batchnorm(
x, scale, bias, mean, variance, is_test=False)

prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [inputs["x"]], out, passes=[])
self.cinn_outputs.append(forward_res[0])

def test_check_results(self):
self.check_outputs_and_grads()
self.check_outputs_and_grads(max_relative_error=1e-3)


# Reopen after decomposer infer dtype fixed
class TestBatchNormTrainFP16(TestBatchNormTrainOp):
class TestBatchNormTrainOpAll(TestBatchNormTrainOp):
def init_case(self):
self.num_channels = 16
self.inputs = {
"x": self.random([2, self.num_channels, 8, 8], "float16"),
"dout": self.random([2, self.num_channels, 8, 8], "float16"),
}

def test_check_results(self):
self.check_outputs_and_grads(max_relative_error=1e-3)
self.inputs = []
for x_shape in [[2, 16, 8, 8], [2, 16, 8, 1], [2, 16, 2048, 8]]:
for x_type in ["float16", "float32"]:
self.inputs.append({
Liyulingyue marked this conversation as resolved.
Show resolved Hide resolved
"x":
self.random(x_shape, x_type, 0.0, 1.0),
"dout":
self.random(x_shape, x_type, 1e-7, 1e-6),
"num_channels":
x_shape[1]
})


@OpTestTool.skip_if(not is_compiled_with_cuda(),
Expand All @@ -93,87 +99,94 @@ def setUp(self):
self.init_case()

def init_case(self):
self.num_channels = 16
self.inputs = {
self.inputs = [{
"x":
self.random([2, self.num_channels, 8, 8], "float32", 0.0, 10.0),
self.random([2, 16, 8, 8], "float32", 0.0, 10.0),
"dout":
self.random([2, self.num_channels, 8, 8], "float32", 1e-7, 1e-6),
}
self.random([2, 16, 8, 8], "float32", 1e-7, 1e-6),
"num_channels":
16
}]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False)
batch_norm = paddle.nn.BatchNorm(
self.num_channels, act=None, is_test=False)
out = batch_norm(x)
for inputs in self.inputs:
x = paddle.to_tensor(inputs["x"], stop_gradient=False)
batch_norm = paddle.nn.BatchNorm(
inputs["num_channels"], act=None, is_test=False)
out = batch_norm(x)

self.paddle_outputs = [out]
self.paddle_grads = self.get_paddle_grads([out], [x],
[self.inputs["dout"]])
self.paddle_outputs.append(out)
grad = self.get_paddle_grads([out], [x], [inputs["dout"]])
self.paddle_grads.append(grad[0])

# Note: If the forward and backward operators are run in the same program,
# the forward result will be incorrect.
def build_cinn_program(self, target):
builder = NetBuilder("batch_norm")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
scale = builder.fill_constant([self.num_channels], 1.0, 'scale',
'float32')
bias = builder.fill_constant([self.num_channels], 0.0, 'bias',
'float32')
mean = builder.fill_constant([self.num_channels], 0.0, 'mean',
'float32')
variance = builder.fill_constant([self.num_channels], 1.0, 'variance',
for inputs in self.inputs:
builder = NetBuilder("batch_norm")
x = builder.create_input(
self.nptype2cinntype(inputs["x"].dtype), inputs["x"].shape,
"x")
scale = builder.fill_constant([inputs["num_channels"]], 1.0,
'scale', 'float32')
bias = builder.fill_constant([inputs["num_channels"]], 0.0, 'bias',
'float32')

out = builder.batchnorm(x, scale, bias, mean, variance, is_test=False)

prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [self.inputs["x"]], out, passes=[])
self.cinn_outputs = [forward_res[0]]

builder_grad = NetBuilder("batch_norm_grad")
dout = builder_grad.create_input(
self.nptype2cinntype(self.inputs["dout"].dtype),
self.inputs["dout"].shape, "dout")
x_g = builder_grad.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x_g")
scale_g = builder_grad.fill_constant(scale.shape(), 1.0, 'scale_g',
'float32')
save_mean = builder_grad.create_input(
self.nptype2cinntype('float32'), out[1].shape(), "save_mean")
save_variance = builder_grad.create_input(
self.nptype2cinntype('float32'), out[2].shape(), "save_variance")

out_grad = builder_grad.batch_norm_grad(dout, x_g, scale_g, save_mean,
save_variance)
prog = builder_grad.build()
backward_res = self.get_cinn_output(
prog,
target, [dout, x_g, save_mean, save_variance], [
self.inputs["dout"], self.inputs["x"], forward_res[1],
forward_res[2]
],
out_grad,
passes=[])
self.cinn_grads = [backward_res[0]]
mean = builder.fill_constant([inputs["num_channels"]], 0.0, 'mean',
'float32')
variance = builder.fill_constant([inputs["num_channels"]], 1.0,
'variance', 'float32')

out = builder.batchnorm(
x, scale, bias, mean, variance, is_test=False)

prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [inputs["x"]], out, passes=[])
self.cinn_outputs.append(forward_res[0])

builder_grad = NetBuilder("batch_norm_grad")
dout = builder_grad.create_input(
self.nptype2cinntype(inputs["dout"].dtype),
inputs["dout"].shape, "dout")
x_g = builder_grad.create_input(
self.nptype2cinntype(inputs["x"].dtype), inputs["x"].shape,
"x_g")
scale_g = builder_grad.fill_constant(scale.shape(), 1.0, 'scale_g',
'float32')
save_mean = builder_grad.create_input(
self.nptype2cinntype('float32'), out[1].shape(), "save_mean")
save_variance = builder_grad.create_input(
self.nptype2cinntype('float32'), out[2].shape(),
"save_variance")

out_grad = builder_grad.batch_norm_grad(dout, x_g, scale_g,
save_mean, save_variance)
prog = builder_grad.build()
backward_res = self.get_cinn_output(
prog,
target, [dout, x_g, save_mean, save_variance],
[inputs["dout"], inputs["x"], forward_res[1], forward_res[2]],
out_grad,
passes=[])
self.cinn_grads.append(backward_res[0])

def test_check_results(self):
self.check_outputs_and_grads()


class TestBatchNormBackwardFP16(TestBatchNormBackwardOp):
class TestBatchNormBackwardAll(TestBatchNormBackwardOp):
def init_case(self):
self.num_channels = 16
self.inputs = {
"x":
self.random([2, self.num_channels, 8, 8], "float16", 0.0, 10.0),
"dout":
self.random([2, self.num_channels, 8, 8], "float16", 1e-7, 1e-6),
}
self.inputs = []
for x_shape in [[2, 16, 8, 8], [2, 16, 8, 1], [2, 16, 2048, 8]]:
for x_type in ["float16", "float32"]:
self.inputs.append({
"x":
self.random(x_shape, x_type, 0.0, 1.0),
"dout":
self.random(x_shape, x_type, 1e-7, 1e-6),
"num_channels":
x_shape[1]
})

def test_check_results(self):
self.check_outputs_and_grads(max_relative_error=1e-3)
Expand Down