This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add op unitest for logical_or (#1397)
- Loading branch information
1 parent
8bca364
commit 225afa0
Showing
1 changed file
with
191 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
# Copyright (c) 2023 CINN Authors. All Rights Reserved. | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
from op_test import OpTest, OpTestTool | ||
from op_test_helper import TestCaseHelper | ||
import paddle | ||
import cinn | ||
from cinn.frontend import * | ||
from cinn.common import * | ||
|
||
|
||
@OpTestTool.skip_if(not is_compiled_with_cuda(), | ||
"x86 test will be skipped due to timeout.") | ||
class TestLogicalOrOp(OpTest): | ||
def setUp(self): | ||
print(f"\nRunning {self.__class__.__name__}: {self.case}") | ||
self.prepare_inputs() | ||
|
||
def prepare_inputs(self): | ||
self.x_np = self.random( | ||
shape=self.case["x_shape"], | ||
dtype=self.case["x_dtype"], | ||
low=-10, | ||
high=100) | ||
self.y_np = self.random( | ||
shape=self.case["y_shape"], | ||
dtype=self.case["y_dtype"], | ||
low=-10, | ||
high=100) | ||
|
||
def build_paddle_program(self, target): | ||
x = paddle.to_tensor(self.x_np, stop_gradient=False) | ||
y = paddle.to_tensor(self.y_np, stop_gradient=False) | ||
|
||
def get_unsqueeze_axis(x_rank, y_rank, axis): | ||
self.assertTrue( | ||
x_rank >= y_rank, | ||
"The rank of x should be greater or equal to that of y.") | ||
axis = axis if axis >= 0 else x_rank - y_rank | ||
unsqueeze_axis = np.arange(0, axis).tolist() + np.arange( | ||
axis + y_rank, x_rank).tolist() | ||
return unsqueeze_axis | ||
|
||
unsqueeze_axis = get_unsqueeze_axis( | ||
len(x.shape), len(y.shape), self.case["axis"]) | ||
y_t = paddle.unsqueeze( | ||
y, axis=unsqueeze_axis) if len(unsqueeze_axis) > 0 else y | ||
out = paddle.logical_or(x, y_t) | ||
|
||
self.paddle_outputs = [out] | ||
|
||
def build_cinn_program(self, target): | ||
builder = NetBuilder("logical_and") | ||
x = builder.create_input( | ||
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], | ||
"x") | ||
y = builder.create_input( | ||
self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"], | ||
"y") | ||
out = builder.logical_or(x, y, axis=self.case["axis"]) | ||
|
||
prog = builder.build() | ||
res = self.get_cinn_output(prog, target, [x, y], | ||
[self.x_np, self.y_np], [out]) | ||
|
||
self.cinn_outputs = res | ||
|
||
def test_check_results(self): | ||
max_relative_error = self.case[ | ||
"max_relative_error"] if "max_relative_error" in self.case else 1e-5 | ||
self.check_outputs_and_grads(max_relative_error=max_relative_error) | ||
|
||
|
||
class TestLogicalOrCase(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestLogicalOrCase" | ||
self.cls = TestLogicalOrOp | ||
self.inputs = [{ | ||
"x_shape": [1], | ||
"y_shape": [1] | ||
}, { | ||
"x_shape": [1024], | ||
"y_shape": [1024] | ||
}, { | ||
"x_shape": [512, 256], | ||
"y_shape": [512, 256] | ||
}, { | ||
"x_shape": [128, 64, 32], | ||
"y_shape": [128, 64, 32] | ||
}, { | ||
"x_shape": [128, 2048, 32], | ||
"y_shape": [128, 2048, 32] | ||
}, { | ||
"x_shape": [16, 8, 4, 2], | ||
"y_shape": [16, 8, 4, 2] | ||
}, { | ||
"x_shape": [1, 1, 1, 1], | ||
"y_shape": [1, 1, 1, 1] | ||
}, { | ||
"x_shape": [16, 8, 4, 2, 1], | ||
"y_shape": [16, 8, 4, 2, 1] | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "bool", | ||
"y_dtype": "bool" | ||
}, { | ||
"x_dtype": "int8", | ||
"y_dtype": "int8" | ||
}, { | ||
"x_dtype": "int16", | ||
"y_dtype": "int16" | ||
}, { | ||
"x_dtype": "int32", | ||
"y_dtype": "int32" | ||
}, { | ||
"x_dtype": "int64", | ||
"y_dtype": "int64" | ||
}, { | ||
"x_dtype": "float32", | ||
"y_dtype": "float32" | ||
}, { | ||
"x_dtype": "float64", | ||
"y_dtype": "float64" | ||
}] | ||
self.attrs = [{"axis": -1}] | ||
|
||
|
||
class TestLogicalOrCaseWithBroadcast(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestLogicalOrCaseWithBroadcast" | ||
self.cls = TestLogicalOrOp | ||
self.inputs = [{ | ||
"x_shape": [1], | ||
"y_shape": [1] | ||
}, { | ||
"x_shape": [1024], | ||
"y_shape": [1] | ||
}, { | ||
"x_shape": [512, 256], | ||
"y_shape": [512, 1] | ||
}, { | ||
"x_shape": [128, 64, 32], | ||
"y_shape": [128, 64, 1] | ||
}, { | ||
"x_shape": [16, 1, 1, 2], | ||
"y_shape": [16, 8, 4, 2] | ||
}, { | ||
"x_shape": [16, 1, 1, 2, 1], | ||
"y_shape": [16, 8, 4, 2, 1] | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "bool", | ||
"y_dtype": "bool" | ||
}, { | ||
"x_dtype": "int8", | ||
"y_dtype": "int8" | ||
}, { | ||
"x_dtype": "int16", | ||
"y_dtype": "int16" | ||
}, { | ||
"x_dtype": "int32", | ||
"y_dtype": "int32" | ||
}, { | ||
"x_dtype": "int64", | ||
"y_dtype": "int64" | ||
}, { | ||
"x_dtype": "float32", | ||
"y_dtype": "float32" | ||
}, { | ||
"x_dtype": "float64", | ||
"y_dtype": "float64" | ||
}] | ||
self.attrs = [{"axis": -1}] | ||
|
||
|
||
if __name__ == "__main__": | ||
TestLogicalOrCase().run() | ||
TestLogicalOrCaseWithBroadcast().run() |