Skip to content

Commit

Permalink
Merge pull request #31 from PESchoenberg/develop
Browse files Browse the repository at this point in the history
Matrix support added.
  • Loading branch information
PESchoenberg authored Jan 27, 2020
2 parents d23c191 + 05094d4 commit 66fc6ce
Show file tree
Hide file tree
Showing 2 changed files with 318 additions and 1 deletion.
26 changes: 25 additions & 1 deletion grsp2.scm
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@
grsp-wagstaff-prime
grsp-dobinski-formula
grsp-method-newton
grsp-method-euler))
grsp-method-euler
grsp-lerp))


; grsp-gtels - Finds if p_n1 is greater, equal or smaller than p_n2.
Expand Down Expand Up @@ -608,3 +609,26 @@
res))


; grsp-lerp - Linear interpolation. Interpolates p_y3 in the interval (p_x1, p_x2)
; given p_x3.
;
; Arguments:
; - p_x1: x1
; - p_x2: x2
; - p_x3: x3
; - p_y1: y1
; - p_y2: y2
;
; Output:
; - y3.
;
; Sources:
; - En.wikipedia.org. (2020). Linear interpolation. [online] Available at:
; https://en.wikipedia.org/wiki/Linear_interpolation [Accessed 24 Jan. 2020].
;
(define (grsp-lerp p_x1 p_x2 p_x3 p_y1 p_y2)
(let ((res 0))
(set! res (+ p_y1 (* (- p_x3 p_x1) (/ (- p_y2 p_y1) (- p_x2 p_x1)))))
res))


293 changes: 293 additions & 0 deletions grsp3.scm
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
; ==============================================================================
;
; grsp3.scm
;
; Matrices.
;
; ==============================================================================
;
; Copyright (C) 2020 Pablo Edronkin (pablo.edronkin at yahoo.com)
;
; This program is free software: you can redistribute it and/or modify
; it under the terms of the GNU Lesser General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU Lesser General Public License for more details.
;
; You should have received a copy of the GNU Lesser General Public License
; along with this program. If not, see <https://www.gnu.org/licenses/>.
;
; ==============================================================================

; http://www.hep.by/gnu/guile/Array-Procedures.html#Array-Procedures
; https://en.wikipedia.org/wiki/Numerical_linear_algebra

(define-module (grsp grsp3)
#:use-module (grsp grsp2)
#:export (grsp-matrix-esi
grsp-matrix-create
grsp-matrix-change
grsp-matrix-transpose
grsp-matrix-opsc
grsp-matrix-sub))


; grsp-matrix-esi - Extracts shape information from an m x n matrix.
;
; Arguments:
; - p_e: number indicating the element value desired.
; - 1: low boundary for m.
; - 2: high boundary for m.
; - 3: low boundary for n.
; - 4: high boundary for n.
;
; Output:
; - A number corresponding to the shape element value desired. Returns 0
; if p_e is incorrect.
;
(define (grsp-matrix-esi p_e p_m)
(let ((res 0)
(s 0))
(set! s (array-shape p_m))
(cond ((equal? p_e 1)
(set! res (car (car s))))
((equal? p_e 2)
(set! res (car (cdr (car s)))))
((equal? p_e 3)
(set! res (car (car (cdr s)))))
((equal? p_e 4)
(set! res (car (cdr (car (cdr s)))))))
res))


; grsp-matrix-create - Creates a p_m x p_n matrix and fill it with element value
; p_v.
;
; Arguments:
; - p_v: element that will initially fill the matrix.
; - p_x: size on x axis (cols), positive integer.
; - p_y: size on y axis (rows), positive integer
;
(define (grsp-matrix-create p_v p_m p_n)
(let ((res 0)
(t "n")
(v 0)
(i 0)
(j 0))
(cond ((eq? (grsp-eiget p_m 0) #t)
(cond ((eq? (grsp-eiget p_n 0) #t)

; For an identity matrix, First set all elements to 0.
(cond ((equal? p_v "#I")
(set! v 0))
(else (set! v p_v)))

; Build the matrix with all elements as 0.
(set! res (make-array v p_m p_n))

; Once the matrix has been created, depending on the type of
; matrix, modify its values.
(cond ((equal? p_v "#I")
(while (< i p_m)
(set! j 0)
(while (< j p_n)
(cond ((eq? i j)
(array-set! res 1 i j)))
(set! j (+ j 1)))
(set! i (+ i 1)))))))))
res))


; grsp-matrix-change - Change the value to p_v2 where the value of a matrix's
; element equals p_v1.
;
; Arguments:
; - p_a: matrix to operate on.
; - p_v1: value to be replaced.
; - p_v2: value to replace p_v1 with.
;
; Output:
; - A modified matrix p_a in which all p_v1 values would have been replaced by
; p_v2
;
(define (grsp-matrix-change p_a p_v1 p_v2)
(let ((res p_a)
(lm 0)
(hm 0)
(ln 0)
(hn 0)
(i 0)
(j 0))

; Extract the boundaries of the matrix.
(set! lm (grsp-matrix-esi 1 res))
(set! hm (grsp-matrix-esi 2 res))
(set! ln (grsp-matrix-esi 3 res))
(set! hn (grsp-matrix-esi 4 res))

; Cycle thorough the matrix and change to p_v1 those elements whose value is
; p_v1.
(set! i lm)
(while (<= i hm)
(set! j ln)
(while (<= j hn)
(cond ((equal? (array-ref res i j) p_v1)
(array-set! res p_v2 i j)))
(set! j (+ j 1)))
(set! i (+ i 1)))
res))


; grsp-matrix-transpose - Transposes a matrix of shape m x n into another with
; shape n x m.
;
; Arguments:
; - p_a: matrix to be transposed.
;
(define (grsp-matrix-transpose p_a)
(let ((res1 p_a)
(res2 0)
(lm 0)
(hm 0)
(ln 0)
(hn 0)
(i 0)
(j 0))

; Extract the boundaries of the matrix.
(set! lm (grsp-matrix-esi 1 res1))
(set! hm (grsp-matrix-esi 2 res1))
(set! ln (grsp-matrix-esi 3 res1))
(set! hn (grsp-matrix-esi 4 res1))

; Create new matrix with transposed shape.
(set! res2 (grsp-matrix-create res2 (+ (- hn ln) 1) (+ (- hm lm) 1)))

; Transpose the elements.
(set! i lm)
(while (<= i hm)
(set! j ln)
(while (<= j hn)
(array-set! res2 (array-ref res1 i j) j i)
(set! j (+ j 1)))
(set! i (+ i 1)))
res2))


; grsp-matrix-opsc - Performs scalar operation p_s between matrix p_a and
; scalar p_v or discrete operation on p_a.
;c
; Arguments:
; - p_s: scalar operation.
; - "#+": scalar sum.
; - "#-": scalar substraction.
; - "#*": scalar multiplication.
; - "#/": scalar division.
; - "#expt": applies expt function to each element of p_a.
; - "#max": applies max function to each element of p_a.
; - "#min": applies min function to each element of p_a.
; - "#rw": replace all elements of p_a with p_v regardless of their value.
; - "#rprnd": replace all elements of p_a with pseudo random numbers in a
; normal distribution with mean 0.0 and standard deviation equal to p_v.
; - "#L": obtains the L matrix of p_a.
; - "#U": obtains the U matrix of p_a.
; - p_a: matrix.
; - p_v: scalar value.
;
; Notes:
; - You may need to use seed->random-state for pseudo random numbers.
;
; Sources:
; - Gnu.org. (2020). Random (Guile Reference Manual). [online] Available at:
; https://www.gnu.org/software/guile/manual/html_node/Random.html
; [Accessed 26 Jan. 2020].
; - https://es.wikipedia.org/wiki/Factorizaci%C3%B3n_LU
;
(define (grsp-matrix-opsc p_s p_a p_v)
(let ((res1 p_a)
(res2 2)
(lm 0)
(hm 0)
(ln 0)
(hn 0)
(i 0)
(j 0))

; Extract the boundaries of the matrix.
(set! lm (grsp-matrix-esi 1 res1))
(set! hm (grsp-matrix-esi 2 res1))
(set! ln (grsp-matrix-esi 3 res1))
(set! hn (grsp-matrix-esi 4 res1))

; Create holding matrix.
(set! res2 (grsp-matrix-create res2 (+ (- hm ln) 1) (+ (- hn ln) 1)))

; Apply scalar operation.
(set! i lm)
(while (<= i hm)
(set! j ln)
(while (<= j hn)
(cond ((equal? p_s "#+")
(array-set! res2 (+ (array-ref res1 i j) p_v) i j))
((equal? p_s "#-")
(array-set! res2 (- (array-ref res1 i j) p_v) i j))
((equal? p_s "#*")
(array-set! res2 (* (array-ref res1 i j) p_v) i j))
((equal? p_s "#/")
(array-set! res2 (/ (array-ref res1 i j) p_v) i j))
((equal? p_s "#expt")
(array-set! res2 (expt (array-ref res1 i j) p_v) i j))
((equal? p_s "#max")
(array-set! res2 (max (array-ref res1 i j) p_v) i j))
((equal? p_s "#min")
(array-set! res2 (min (array-ref res1 i j) p_v) i j))
((equal? p_s "#rw")
(array-set! res2 p_v i j))
((equal? p_s "#L")
(cond ((< i j)
(array-set! res2 0 i j))))
((equal? p_s "#U")
(cond ((> i j)
(array-set! res2 0 i j))))
((equal? p_s "#rprnd")
(array-set! res2 (+ 0.0 (* p_v (random:normal))) i j)))
(set! j (+ j 1)))
(set! i (+ i 1)))
res2))


; grsp-matrix-sub - Extracts a block or sub matrix from matrix p_a. The process is
; not destructive with regards to p_a. The user is responsable for providing
; correct boundaries since the function does not check those parameters in
; relation to p_a.
;
; Arguments:
; - p_a: matrix to be partitioned.
; - p_lm: lower m boundary.
; - p_hm: higher m boundary.
; - p_ln: lower n boundary.
; - p_hn: higher n boundary
;
(define (grsp-matrix-sub p_a p_lm p_hm p_ln p_hn)
(let ((res1 p_a)
(res2 2)
(i 0)
(j 0))

; Create submatrix.
(set! res2 (grsp-matrix-create res2 (+ (- p_hm p_ln) 1) (+ (- p_hn p_ln) 1)))

; Copy to submatrix.
(set! i p_lm)
(while (<= i p_hm)
(set! j p_ln)
(while (<= j p_hn)
(array-set! res2 (array-ref res1 i j) i j)
(set! j (+ j 1)))
(set! i (+ i 1)))
res2))

0 comments on commit 66fc6ce

Please sign in to comment.