-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
257 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# GPT-J 6B" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 1. Load model and tokenizer from HuggingFace Hub\n", | ||
"\n", | ||
"GPT-J is loaded in fp32 mode by default which takes about 24GB CPU memory." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from transformers import AutoTokenizer, AutoModelForCausalLM\n", | ||
"\n", | ||
"tokenizer = AutoTokenizer.from_pretrained(\"EleutherAI/gpt-j-6B\")\n", | ||
"\n", | ||
"model = AutoModelForCausalLM.from_pretrained(\"EleutherAI/gpt-j-6B\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 2. Use BMInf wrapper for low-resource inference" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import bminf\n", | ||
"with torch.cuda.device(0):\n", | ||
" model = bminf.wrapper(model, quantization=False, memory_limit=8 << 30) # 8GB" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 3. See the GPU usage" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"|===========================================================================|\n", | ||
"| PyTorch CUDA memory summary, device ID 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| CUDA OOMs: 0 | cudaMalloc retries: 0 |\n", | ||
"|===========================================================================|\n", | ||
"| Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Allocated memory | 9297 MB | 9297 MB | 9297 MB | 0 B |\n", | ||
"| from large pool | 9296 MB | 9296 MB | 9296 MB | 0 B |\n", | ||
"| from small pool | 1 MB | 1 MB | 1 MB | 0 B |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Active memory | 9297 MB | 9297 MB | 9297 MB | 0 B |\n", | ||
"| from large pool | 9296 MB | 9296 MB | 9296 MB | 0 B |\n", | ||
"| from small pool | 1 MB | 1 MB | 1 MB | 0 B |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| GPU reserved memory | 9298 MB | 9298 MB | 9298 MB | 0 B |\n", | ||
"| from large pool | 9296 MB | 9296 MB | 9296 MB | 0 B |\n", | ||
"| from small pool | 2 MB | 2 MB | 2 MB | 0 B |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Non-releasable memory | 710656 B | 18400 KB | 34800 KB | 34106 KB |\n", | ||
"| from large pool | 0 B | 16384 KB | 32768 KB | 32768 KB |\n", | ||
"| from small pool | 710656 B | 2032 KB | 2032 KB | 1338 KB |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Allocations | 125 | 125 | 125 | 0 |\n", | ||
"| from large pool | 72 | 72 | 72 | 0 |\n", | ||
"| from small pool | 53 | 53 | 53 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Active allocs | 125 | 125 | 125 | 0 |\n", | ||
"| from large pool | 72 | 72 | 72 | 0 |\n", | ||
"| from small pool | 53 | 53 | 53 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| GPU reserved segments | 65 | 65 | 65 | 0 |\n", | ||
"| from large pool | 64 | 64 | 64 | 0 |\n", | ||
"| from small pool | 1 | 1 | 1 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Non-releasable allocs | 1 | 2 | 3 | 2 |\n", | ||
"| from large pool | 0 | 1 | 2 | 2 |\n", | ||
"| from small pool | 1 | 1 | 1 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Oversize allocations | 0 | 0 | 0 | 0 |\n", | ||
"|---------------------------------------------------------------------------|\n", | ||
"| Oversize GPU segments | 0 | 0 | 0 | 0 |\n", | ||
"|===========================================================================|\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(torch.cuda.memory_summary())" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 4. Run generation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", | ||
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"prompt = \"To be or not to be, that\"\n", | ||
"input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n", | ||
"gen_tokens = model.generate(\n", | ||
" input_ids.cuda(),\n", | ||
" do_sample=True,\n", | ||
" temperature=0.9,\n", | ||
" max_length=20\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 5. Get the generated text" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['To be or not to be, that is the question — that has been the question, and still']" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"tokenizer.batch_decode(gen_tokens)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "venv", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
}, | ||
"orig_nbformat": 4, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "29d71688ffbe7d005e79abd80e578fa5cab2d2c2e11d1955de002b95fcc7229b" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
torch | ||
cpm_kernels>=1.0.9 | ||
cpm_kernels>=1.0.9 | ||
typing_extensions |