Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sample notebook + README file for contributing SUPER IVIM DC package #37

Merged
merged 1 commit into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions src/original/TCML_TechnionIIT/SUPER-IVIM-DC/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# SUPER-IVIM-DC

Provided here is a sample Jupyter notebook for the SUPER-IVIM-DC package.

Full README and usage instructions can be found here: https://github.com/TechnionComputationalMRILab/SUPER-IVIM-DC or https://pypi.org/project/super-ivim-dc/0.4.0/

Citation:

```
@article{
Korngut_Rotman_Afacan_Kurugol_Zaffrani-Reznikov_Nemirovsky-Rotman_Warfield_Freiman_2022,
title={SUPER-IVIM-DC: Intra-voxel incoherent motion based fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency},
volume={13432}, DOI={10.1007/978-3-031-16434-7_71},
journal={Lecture Notes in Computer Science},
author={Korngut, Noam and Rotman, Elad and Afacan, Onur and Kurugol, Sila and Zaffrani-Reznikov, Yael and Nemirovsky-Rotman, Shira and Warfield, Simon and Freiman, Moti},
year={2022},
pages={743–752}
}
```

[The paper is also available on ArXiv](https://arxiv.org/abs/2206.03820).
167 changes: 167 additions & 0 deletions src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"working_dir: str = './working_dir'\n",
"super_ivim_dc_filename: str = 'super_ivim_dc' # do not include .pt\n",
"ivimnet_filename: str = 'ivimnet' # do not include .pt\n",
"\n",
"bvalues = np.array([0,15,30,45,60,75,90,105,120,135,150,175,200,400,600,800])\n",
"snr = 10\n",
"sample_size = 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simulate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run training, generate .pt files"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from super_ivim_dc.train import train\n",
"\n",
"train(\n",
" SNR=snr, \n",
" bvalues=bvalues, \n",
" super_ivim_dc=True,\n",
" ivimnet=True,\n",
" work_dir=working_dir,\n",
" super_ivim_dc_filename=super_ivim_dc_filename,\n",
" ivimnet_filename=ivimnet_filename,\n",
" verbose=False\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Files that will be created:\n",
"\n",
"- **super_ivim_dc_init.json** - contains the initial values used in the training\n",
"- **super_ivim_dc_init_NRMSE.csv** - ???\n",
"- **super_ivim_dc_init.pt** - the pytorch model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"Generate a simulated signal + ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from super_ivim_dc.infer import test_infer\n",
"\n",
"test_infer(\n",
" SNR=snr,\n",
" bvalues=bvalues,\n",
" work_dir=working_dir,\n",
" super_ivim_dc_filename=super_ivim_dc_filename,\n",
" ivimnet_filename=ivimnet_filename,\n",
" save_figure_to=None, # if set to None, the figure will be shown in the notebook\n",
" sample_size=sample_size,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate simulated signal"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from super_ivim_dc.IVIMNET import simulations\n",
"\n",
"IVIM_signal_noisy, Dt, f, Dp = simulations.sim_signal(\n",
" SNR=snr, \n",
" bvalues=bvalues, \n",
" sims=sample_size\n",
")\n",
"\n",
"Dt, f, Dp = np.squeeze(Dt), np.squeeze(f), np.squeeze(Dp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run inference on the simulated signal"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from super_ivim_dc.infer import infer_from_signal\n",
"\n",
"Dp_ivimnet, Dt_ivimnet, Fp_ivimnet, S0_ivimnet = infer_from_signal(\n",
" signal=IVIM_signal_noisy, \n",
" bvalues=bvalues,\n",
" model_path=f\"{working_dir}/{ivimnet_filename}.pt\",\n",
")\n",
"\n",
"Dp_superivimdc, Dt_superivimdc, Fp_superivimdc, S0_superivimdc = infer_from_signal(\n",
" signal=IVIM_signal_noisy, \n",
" bvalues=bvalues,\n",
" model_path=f\"{working_dir}/{super_ivim_dc_filename}.pt\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "super_ivim_dc",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading