-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #37 from tcml-bme/main
Sample notebook + README file for contributing SUPER IVIM DC package
- Loading branch information
Showing
2 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# SUPER-IVIM-DC | ||
|
||
Provided here is a sample Jupyter notebook for the SUPER-IVIM-DC package. | ||
|
||
Full README and usage instructions can be found here: https://github.com/TechnionComputationalMRILab/SUPER-IVIM-DC or https://pypi.org/project/super-ivim-dc/0.4.0/ | ||
|
||
Citation: | ||
|
||
``` | ||
@article{ | ||
Korngut_Rotman_Afacan_Kurugol_Zaffrani-Reznikov_Nemirovsky-Rotman_Warfield_Freiman_2022, | ||
title={SUPER-IVIM-DC: Intra-voxel incoherent motion based fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency}, | ||
volume={13432}, DOI={10.1007/978-3-031-16434-7_71}, | ||
journal={Lecture Notes in Computer Science}, | ||
author={Korngut, Noam and Rotman, Elad and Afacan, Onur and Kurugol, Sila and Zaffrani-Reznikov, Yael and Nemirovsky-Rotman, Shira and Warfield, Simon and Freiman, Moti}, | ||
year={2022}, | ||
pages={743–752} | ||
} | ||
``` | ||
|
||
[The paper is also available on ArXiv](https://arxiv.org/abs/2206.03820). |
167 changes: 167 additions & 0 deletions
167
src/original/TCML_TechnionIIT/SUPER-IVIM-DC/sample.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"working_dir: str = './working_dir'\n", | ||
"super_ivim_dc_filename: str = 'super_ivim_dc' # do not include .pt\n", | ||
"ivimnet_filename: str = 'ivimnet' # do not include .pt\n", | ||
"\n", | ||
"bvalues = np.array([0,15,30,45,60,75,90,105,120,135,150,175,200,400,600,800])\n", | ||
"snr = 10\n", | ||
"sample_size = 100" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Simulate" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Run training, generate .pt files" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from super_ivim_dc.train import train\n", | ||
"\n", | ||
"train(\n", | ||
" SNR=snr, \n", | ||
" bvalues=bvalues, \n", | ||
" super_ivim_dc=True,\n", | ||
" ivimnet=True,\n", | ||
" work_dir=working_dir,\n", | ||
" super_ivim_dc_filename=super_ivim_dc_filename,\n", | ||
" ivimnet_filename=ivimnet_filename,\n", | ||
" verbose=False\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Files that will be created:\n", | ||
"\n", | ||
"- **super_ivim_dc_init.json** - contains the initial values used in the training\n", | ||
"- **super_ivim_dc_init_NRMSE.csv** - ???\n", | ||
"- **super_ivim_dc_init.pt** - the pytorch model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Test\n", | ||
"\n", | ||
"Generate a simulated signal + ..." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from super_ivim_dc.infer import test_infer\n", | ||
"\n", | ||
"test_infer(\n", | ||
" SNR=snr,\n", | ||
" bvalues=bvalues,\n", | ||
" work_dir=working_dir,\n", | ||
" super_ivim_dc_filename=super_ivim_dc_filename,\n", | ||
" ivimnet_filename=ivimnet_filename,\n", | ||
" save_figure_to=None, # if set to None, the figure will be shown in the notebook\n", | ||
" sample_size=sample_size,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Generate simulated signal" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from super_ivim_dc.IVIMNET import simulations\n", | ||
"\n", | ||
"IVIM_signal_noisy, Dt, f, Dp = simulations.sim_signal(\n", | ||
" SNR=snr, \n", | ||
" bvalues=bvalues, \n", | ||
" sims=sample_size\n", | ||
")\n", | ||
"\n", | ||
"Dt, f, Dp = np.squeeze(Dt), np.squeeze(f), np.squeeze(Dp)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Run inference on the simulated signal" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from super_ivim_dc.infer import infer_from_signal\n", | ||
"\n", | ||
"Dp_ivimnet, Dt_ivimnet, Fp_ivimnet, S0_ivimnet = infer_from_signal(\n", | ||
" signal=IVIM_signal_noisy, \n", | ||
" bvalues=bvalues,\n", | ||
" model_path=f\"{working_dir}/{ivimnet_filename}.pt\",\n", | ||
")\n", | ||
"\n", | ||
"Dp_superivimdc, Dt_superivimdc, Fp_superivimdc, S0_superivimdc = infer_from_signal(\n", | ||
" signal=IVIM_signal_noisy, \n", | ||
" bvalues=bvalues,\n", | ||
" model_path=f\"{working_dir}/{super_ivim_dc_filename}.pt\",\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "super_ivim_dc", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |