-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #56 from abhicodes369/created_repostatus/statistics
report on repo
- Loading branch information
Showing
5 changed files
with
234 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -21,4 +21,4 @@ md5sums.txt | |
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.pyc | ||
*.pyc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,20 +1,20 @@ | ||
Technique,Category,Subcategory,notes,subfolder,Link to source code,Authors,Institution,function/module,DOI,Tester,test status | ||
IVIM,Fitting,LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_least_squares/fit_least_squares_array,,tbd, | ||
IVIM,Fitting,segmented LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_segmented/fit_segmented_array,,tbd, | ||
Tri-exponential,Fitting,LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_least_squares_tri_exp/fit_least_squares_array_tri_exp,,tbd, | ||
Tri-exponential,Fitting,Segmented LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_segmented_tri_exp/fit_segmented_array_tri_exp,https://doi.org/10.3389/fphys.2022.942495,tbd, | ||
IVIM,Fitting,Bayesian,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion/Sebastiano Barbieri,Amsterdam UMC,fit_bayesian_array,https://doi.org/10.1002/mrm.28852,tbd, | ||
IVIM,Fitting,two-step segmented fit approach,also includes ADC calculation as a separate function,PvH_KB_NKI,TF2.4_IVIM-MRI_CodeCollection/src/original/PvH_KB_NKI/,Petra van Houdt/Stefan Zijlema/Koen Baas,the Netherlands Cancer Institute,DWI_functions_standalone.py,https://doi.org/10.3389/fonc.2021.705964,tbd, | ||
IVIM,Fitting,two-step (segmented) LSQ fitting, cut-off chosen for brain data; option to fit IVIM with inversion recovery or without IR,PV_MUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/PV_MUMC/,Paulien Voorter,Maastricht University Medical Center,two_step_IVIM_fit.py,,tbd, | ||
IVIM,Fitting,bi-exponential NLLS,Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_biexp.py,Ivan A. Rashid,Lund University,IvimModelBiexp,tba,tbd, | ||
IVIM,Fitting,2-step segmented NLLS,First estimates and fixes D before a bi-exponential NLLS fit. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_segmented_2step.py,Ivan A. Rashid,Lund University,IvimModelSegmented2Step,tba,tbd, | ||
IVIM,Fitting,3-step segmented NLLS,First estimates and fixes D followed by an estimate of D* followed by a bi-exponential NLLS fit. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_segmented_3step.py,Ivan A. Rashid,Lund University,IvimModelSegmented3Step,tba,tbd, | ||
IVIM,Fitting,2-step segmented NLLS,First estimates and fixes D. Subtracts the diffusion signal and estimated D*. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_subtracted.py,Ivan A. Rashid,Lund University,IvimModelSubtracted,tba,tbd, | ||
IVIM,Fitting,Variable projection,See referenced article. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_mix.py,Farooq et al. Modified by Ivan A. Rashid,Lund University,IvimModelVP,https://doi.org/10.1038/srep38927,tbd, | ||
IVIM,Fitting,Variable projection,See referenced article. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_topopro.py,Fadnavis et al. Modified by Ivan A. Rashid,Lund University,IvimModelTopoPro,https://doi.org/10.3389/fnins.2021.779025,tbd, | ||
IVIM,Fitting,Linear fit,Linear fit for D with extrapolation for f. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_linear.py,Modified by Ivan A. Rashid,Lund University,IvimModelLinear,tba,tbd, | ||
IVIM,Fitting,sIVIM fit,NLLS of the simplified IVIM model (sIVIM). Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_sivim.py,Modified by Ivan A. Rashid,Lund University,IvimModelsIVIM,tba,tbd, | ||
IVIM,Fitting,Segmented NLLS fitting,MATLAB code,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,IVIM_seg,https://doi.org/10.1007/s10334-018-0697-5,tbd, | ||
IVIM,Fitting,Bayesian,MATLAB code,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,IVIM_bayes,https://doi.org/10.1002/mrm.26783,tbd, | ||
IVIM,Fitting,Segmented NLLS fitting,Specifically tailored algorithm for NLLS segmented fitting,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,seg,https://doi.org/10.1007/s10334-018-0697-5,tbd, | ||
IVIM,Fitting,Linear fit,Linear fit for D and D* and f. Intended to be extremely fast but not always accurate,ETP_SRI,TF2.4_IVIM-MRI_CodeCollection/src/original/ETP_SRI/LinearFitting.py,Eric Peterson,SRI International,,,tbd, | ||
Technique,Category,Subcategory,notes,subfolder,Link to source code,Authors,Institution,function/module,DOI,Tester,test status,Wrapped | ||
IVIM,Fitting,LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_least_squares/fit_least_squares_array,,tbd,, | ||
IVIM,Fitting,segmented LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_segmented/fit_segmented_array,,tbd,,OGC_AmsterdamUMC_biexp | ||
Tri-exponential,Fitting,LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_least_squares_tri_exp/fit_least_squares_array_tri_exp,,tbd,, | ||
Tri-exponential,Fitting,Segmented LSQ fitting,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion,Amsterdam UMC,fit_segmented_tri_exp/fit_segmented_array_tri_exp,https://doi.org/10.3389/fphys.2022.942495,tbd,,OGC_AmsterdamUMC_biexp_segmented | ||
IVIM,Fitting,Bayesian,,OGC_AmsterdamUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/OGC_AmsterdamUMC/,Oliver Gurney-Champion/Sebastiano Barbieri,Amsterdam UMC,fit_bayesian_array,https://doi.org/10.1002/mrm.28852,tbd,,OGC_AmsterdamUMC_Bayesian_biexp | ||
IVIM,Fitting,two-step segmented fit approach,also includes ADC calculation as a separate function,PvH_KB_NKI,TF2.4_IVIM-MRI_CodeCollection/src/original/PvH_KB_NKI/,Petra van Houdt/Stefan Zijlema/Koen Baas,the Netherlands Cancer Institute,DWI_functions_standalone.py,https://doi.org/10.3389/fonc.2021.705964,tbd,,PvH_KB_NKI_IVIMfit | ||
IVIM,Fitting,two-step (segmented) LSQ fitting, cut-off chosen for brain data; option to fit IVIM with inversion recovery or without IR,PV_MUMC,TF2.4_IVIM-MRI_CodeCollection/src/original/PV_MUMC/,Paulien Voorter,Maastricht University Medical Center,two_step_IVIM_fit.py,,tbd,,PV_MUMC_biexp | ||
IVIM,Fitting,bi-exponential NLLS,Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_biexp.py,Ivan A. Rashid,Lund University,IvimModelBiexp,tba,tbd,,IAR_LU_biexp | ||
IVIM,Fitting,2-step segmented NLLS,First estimates and fixes D before a bi-exponential NLLS fit. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_segmented_2step.py,Ivan A. Rashid,Lund University,IvimModelSegmented2Step,tba,tbd,,IAR_LU_segmented_2step | ||
IVIM,Fitting,3-step segmented NLLS,First estimates and fixes D followed by an estimate of D* followed by a bi-exponential NLLS fit. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_segmented_3step.py,Ivan A. Rashid,Lund University,IvimModelSegmented3Step,tba,tbd,,IAR_LU_segmented_3step | ||
IVIM,Fitting,2-step segmented NLLS,First estimates and fixes D. Subtracts the diffusion signal and estimated D*. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_subtracted.py,Ivan A. Rashid,Lund University,IvimModelSubtracted,tba,tbd,,IAR_LU_subtracted | ||
IVIM,Fitting,Variable projection,See referenced article. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_mix.py,Farooq et al. Modified by Ivan A. Rashid,Lund University,IvimModelVP,https://doi.org/10.1038/srep38927,tbd,,IAR_LU_modified_mix | ||
IVIM,Fitting,Variable projection,See referenced article. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_topopro.py,Fadnavis et al. Modified by Ivan A. Rashid,Lund University,IvimModelTopoPro,https://doi.org/10.3389/fnins.2021.779025,tbd,,IAR_LU_modified_topopro | ||
IVIM,Fitting,Linear fit,Linear fit for D with extrapolation for f. Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_linear.py,Modified by Ivan A. Rashid,Lund University,IvimModelLinear,tba,tbd,, | ||
IVIM,Fitting,sIVIM fit,NLLS of the simplified IVIM model (sIVIM). Supports units in mm2/s and µm2/ms,IAR_LundUniversity,TF2.4_IVIM-MRI_CodeCollection/src/original/IAR_LundUniversity/ivim_fit_method_modified_sivim.py,Modified by Ivan A. Rashid,Lund University,IvimModelsIVIM,tba,tbd,, | ||
IVIM,Fitting,Segmented NLLS fitting,MATLAB code,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,IVIM_seg,https://doi.org/10.1007/s10334-018-0697-5,tbd,,OJ_GU_seg | ||
IVIM,Fitting,Bayesian,MATLAB code,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,IVIM_bayes,https://doi.org/10.1002/mrm.26783,tbd,, | ||
IVIM,Fitting,Segmented NLLS fitting,Specifically tailored algorithm for NLLS segmented fitting,OJ_GU,TF2.4_IVIM-MRI_CodeCollection/src/original/OJ_GU/,Oscar Jalnefjord,University of Gothenburg,seg,https://doi.org/10.1007/s10334-018-0697-5,tbd,, | ||
IVIM,Fitting,Linear fit,Linear fit for D and D* and f. Intended to be extremely fast but not always accurate,ETP_SRI,TF2.4_IVIM-MRI_CodeCollection/src/original/ETP_SRI/LinearFitting.py,Eric Peterson,SRI International,,,tbd,,ETP_SRI_LinearFitting |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,5 +11,6 @@ cvxpy | |
zenodo-get | ||
pytest | ||
tqdm | ||
pandas | ||
sphinx | ||
sphinx_rtd_theme |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import os | ||
import pandas as pd | ||
import json | ||
|
||
# directory of the current script | ||
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) | ||
|
||
# path to the repository | ||
REPO_DIR = os.path.dirname(SCRIPT_DIR) | ||
|
||
CODE_CONTRIBUTIONS_FILE = os.path.join(REPO_DIR, "doc", "code_contributions_record.csv") | ||
ALGORITHMS_FILE = os.path.join(REPO_DIR, "tests", "IVIMmodels", "unit_tests", "algorithms.json") | ||
SOURCE_FOLDER = os.path.join(REPO_DIR, "src", "original") | ||
WRAPPED_FOLDER = os.path.join(REPO_DIR, "src", "standardized") | ||
|
||
def generate_html(): | ||
""" | ||
Generates an HTML report based on the code contributions and algorithm information. | ||
The report includes the following columns: | ||
- Technique | ||
- Subfolder | ||
- Contributors | ||
- Wrapped | ||
- Tested | ||
The report is saved as 'combined_report.html' in the 'website' directory of the repository. | ||
""" | ||
# Read the CSV file | ||
df = pd.read_csv(CODE_CONTRIBUTIONS_FILE) | ||
|
||
unique_subfolders = df['subfolder'].unique().tolist() | ||
|
||
# Read the JSON file | ||
with open(ALGORITHMS_FILE, 'r') as f: | ||
algorithms_data = json.load(f) | ||
|
||
# list of all algorithms from the JSON file | ||
all_algorithms = algorithms_data['algorithms'] | ||
|
||
# Check if both code_contributions_file matches with source folder | ||
for subfolder in unique_subfolders: | ||
subfolder_path = os.path.join(SOURCE_FOLDER, subfolder) | ||
if not os.path.exists(subfolder_path): | ||
print(f"Warning: Subfolder '{subfolder}' does not exist in the source folder.") | ||
|
||
# Add column 'Tested' to the DataFrame based on a match with algorithms and wrapped column | ||
df['Wrapped'] = df['Wrapped'].fillna('') | ||
df['Tested'] = df.apply(lambda row: 'Yes' if any(algorithm in row['Wrapped'] for algorithm in all_algorithms) else '', axis=1) | ||
|
||
# Select the desired columns | ||
df_selected = df[['Technique', 'subfolder', 'Authors', 'Wrapped', 'Tested']] | ||
df_selected.columns = ['Technique', 'Subfolder', 'Contributors', 'Wrapped', 'Tested'] | ||
|
||
# Convert the DataFrame to HTML | ||
html_string = df_selected.to_html(index=False) | ||
|
||
# Save the HTML to a file | ||
with open(os.path.join(REPO_DIR, 'website', 'combined_report.html'), 'w') as f: | ||
f.write(html_string) | ||
|
||
# Printing message that report has been successfully generated | ||
print("Combined HTML report generated successfully.") | ||
|
||
if __name__ == "__main__": | ||
generate_html() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
<table border="1" class="dataframe"> | ||
<thead> | ||
<tr style="text-align: right;"> | ||
<th>Technique</th> | ||
<th>Subfolder</th> | ||
<th>Contributors</th> | ||
<th>Wrapped</th> | ||
<th>Tested</th> | ||
</tr> | ||
</thead> | ||
<tbody> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OGC_AmsterdamUMC</td> | ||
<td>Oliver Gurney-Champion</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OGC_AmsterdamUMC</td> | ||
<td>Oliver Gurney-Champion</td> | ||
<td>OGC_AmsterdamUMC_biexp</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>Tri-exponential</td> | ||
<td>OGC_AmsterdamUMC</td> | ||
<td>Oliver Gurney-Champion</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>Tri-exponential</td> | ||
<td>OGC_AmsterdamUMC</td> | ||
<td>Oliver Gurney-Champion</td> | ||
<td>OGC_AmsterdamUMC_biexp_segmented</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OGC_AmsterdamUMC</td> | ||
<td>Oliver Gurney-Champion/Sebastiano Barbieri</td> | ||
<td>OGC_AmsterdamUMC_Bayesian_biexp</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>PvH_KB_NKI</td> | ||
<td>Petra van Houdt/Stefan Zijlema/Koen Baas</td> | ||
<td>PvH_KB_NKI_IVIMfit</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>PV_MUMC</td> | ||
<td>Paulien Voorter</td> | ||
<td>PV_MUMC_biexp</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Ivan A. Rashid</td> | ||
<td>IAR_LU_biexp</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Ivan A. Rashid</td> | ||
<td>IAR_LU_segmented_2step</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Ivan A. Rashid</td> | ||
<td>IAR_LU_segmented_3step</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Ivan A. Rashid</td> | ||
<td>IAR_LU_subtracted</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Farooq et al. Modified by Ivan A. Rashid</td> | ||
<td>IAR_LU_modified_mix</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Fadnavis et al. Modified by Ivan A. Rashid</td> | ||
<td>IAR_LU_modified_topopro</td> | ||
<td>Yes</td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Modified by Ivan A. Rashid</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>IAR_LundUniversity</td> | ||
<td>Modified by Ivan A. Rashid</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OJ_GU</td> | ||
<td>Oscar Jalnefjord</td> | ||
<td>OJ_GU_seg</td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OJ_GU</td> | ||
<td>Oscar Jalnefjord</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>OJ_GU</td> | ||
<td>Oscar Jalnefjord</td> | ||
<td></td> | ||
<td></td> | ||
</tr> | ||
<tr> | ||
<td>IVIM</td> | ||
<td>ETP_SRI</td> | ||
<td>Eric Peterson</td> | ||
<td>ETP_SRI_LinearFitting</td> | ||
<td>Yes</td> | ||
</tr> | ||
</tbody> | ||
</table> |