Skip to content

Commit

Permalink
Generate a variety of testing data and came up
Browse files Browse the repository at this point in the history
command_line version of sim_vim_sig.py
  • Loading branch information
Unique-Usman committed Mar 9, 2024
1 parent 1a8785a commit 163a187
Show file tree
Hide file tree
Showing 6 changed files with 2,151 additions and 238 deletions.
7 changes: 7 additions & 0 deletions phantoms/MR_XCAT_qMRI/b_values.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"original": [0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 350.0, 400.0, 550.0, 700.0, 850.0, 1000.0],
"one": [0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 350.0, 400.0, 550.0, 700.0, 850.0, 1000.0, 1100.0, 1200.0],
"two": [0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 350.0, 400.0, 500.0, 700.0, 800.0, 1000.0, 1100.0, 1200.0],
"three": [0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 350.0, 450.0, 550.0, 675.0, 800.0],
"four": [0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0]
}
173 changes: 111 additions & 62 deletions phantoms/MR_XCAT_qMRI/sim_ivim_sig.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
from scipy.io import loadmat
import nibabel as nib
import json
import argparse
import os
from utilities.data_simulation.Download_data import download_data

##########
Expand Down Expand Up @@ -366,76 +368,123 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True):
return MR, Dim, fim, Dpim, legend

if __name__ == '__main__':
bvalue = np.array([0., 1, 2, 5, 10, 20, 30, 50, 75, 100, 150, 250, 350, 400, 550, 700, 850, 1000])
noise = 0.0005
motion = False
interleaved = False
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved)
# sig = np.flip(sig,axis=0)
# sig = np.flip(sig,axis=1)
res=np.eye(4)
res[2]=2
parser = argparse.ArgumentParser(description=f"""
A commandline for generating a 4D IVIM phantom as nifti file
""")

voxel_selector_fraction = 0.5
D, f, Ds = contrast_curve_calc()
ignore = np.isnan(D)
generic_data = {}
for level, name in legend.items():
if len(ignore) > level and ignore[level]:
continue
selector = XCAT == level
voxels = sig[selector]
if len(voxels) < 1:
continue
signals = np.squeeze(voxels[int(voxels.shape[0] * voxel_selector_fraction)]).tolist()
generic_data[name] = {
'noise': noise,
'D': np.mean(Dim[selector], axis=0),
'f': np.mean(fim[selector], axis=0),
'Dp': np.mean(Dpim[selector], axis=0),
'data': signals
}
generic_data['config'] = {
'bvalues': bvalue.tolist()
}
with open('generic.json', 'w') as f:
json.dump(generic_data, f, indent=4)
def parse_bvalues_file(file_path):
"""Used for passing the JSON file"""
if not os.path.exists(file_path):
raise argparse.ArgumentTypeError(f"File '{file_path}' does not exist")

try:
with open(file_path, "r") as file:
bvalues_dict = json.load(file)
if not isinstance(bvalues_dict, dict):
raise argparse.ArgumentTypeError("JSON file does not contain a dict of b-values")
for _, bvalue in bvalues_dict.items():
if not isinstance(bvalue, list):
raise argparse.ArgumentTypeError("bvalues in JSON file are not list")
for value in bvalue:
if not isinstance(value, float):
raise argparse.ArgumentTypeError("Values in lists are not float")
except json.JSONDecodeError as e:
raise argparse.ArgumentTypeError(f"Invalid JSON file: {e}")

return bvalues_dict

parser.add_argument("-b", "--bvalue", type=float,
nargs="+",
help="B values (list of of numbers)")
parser.add_argument("-f", "--bvalues-file", metavar="FILE", type=parse_bvalues_file,
help='JSON file containing the b-values')
parser.add_argument("-n", "--noise", type=float, default=0.0005, help="Noise")
parser.add_argument("-m", "--motion", action="store_true", help="Motion flag")
parser.add_argument("-i", "--interleaved", action="store_true", help="Interleaved flag")
args = parser.parse_args()

nifti_img = nib.Nifti1Image(sig, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
if not motion:
output_file = 'output.nii.gz' # Replace with your desired output file name
elif interleaved:
output_file = 'output_resp_int.nii.gz' # Replace with your desired output file name
if args.bvalues_file and args.bvalue:
raise argparse.ArgumentError(None, "Arguments --bvalues-file and --bvalues are mutually exclusive")

bvalues = None
if args.bvalues_file:
bvalues = args.bvalues_file
elif args.bvalue:
bvalues = {"cmd": args.bvalue}
else:
output_file = 'output_resp.nii.gz' # Replace with your desired output file name
bvalues = {"original": [0., 1, 2, 5, 10, 20, 30, 50, 75, 100, 150, 250, 350, 400, 550, 700, 850, 1000]}


noise = args.noise
motion = args.motion
interleaved = args.interleaved
for key, bvalue in bvalues.items():
bvalue = np.array(bvalue)
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved)
# sig = np.flip(sig,axis=0)
# sig = np.flip(sig,axis=1)
res=np.eye(4)
res[2]=2

voxel_selector_fraction = 0.5
D, f, Ds = contrast_curve_calc()
ignore = np.isnan(D)
generic_data = {}
for level, name in legend.items():
if len(ignore) > level and ignore[level]:
continue
selector = XCAT == level
voxels = sig[selector]
if len(voxels) < 1:
continue
signals = np.squeeze(voxels[int(voxels.shape[0] * voxel_selector_fraction)]).tolist()
generic_data[name] = {
'noise': noise,
'D': np.mean(Dim[selector], axis=0),
'f': np.mean(fim[selector], axis=0),
'Dp': np.mean(Dpim[selector], axis=0),
'data': signals
}
generic_data['config'] = {
'bvalues': bvalue.tolist()
}
with open(f'generic_{key}.json', 'w') as f:
json.dump(generic_data, f, indent=4)

nifti_img = nib.Nifti1Image(sig, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
if not motion:
output_file = f'output_{key}.nii.gz' # Replace with your desired output file name
elif interleaved:
output_file = f'output_resp_int_{key}.nii.gz' # Replace with your desired output file name
else:
output_file = f'output_resp_{key}.nii.gz' # Replace with your desired output file name

nib.save(nifti_img, output_file)
nib.save(nifti_img, output_file)


nifti_img = nib.Nifti1Image(XCAT, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
output_file = 'output_xcat.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)
nifti_img = nib.Nifti1Image(XCAT, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
output_file = f'output_xcat_{key}.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)

nifti_img = nib.Nifti1Image(Dim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = 'D.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)
nifti_img = nib.Nifti1Image(Dim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = f'D_{key}.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)

nifti_img = nib.Nifti1Image(fim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = 'f.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)
nifti_img = nib.Nifti1Image(fim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = f'f_{key}.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)

nifti_img = nib.Nifti1Image(Dpim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = 'Dp.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)
nifti_img = nib.Nifti1Image(Dpim, affine=res) # Replace affine if necessary
# Save the NIfTI image to a file
nifti_img.header.set_data_dtype(np.float64)
output_file = f'Dp_{key}.nii.gz' # Replace with your desired output file name
nib.save(nifti_img, output_file)

np.savetxt('bvals.txt', bvalue)
np.savetxt(f'bvals_{key}.txt', bvalue)
Loading

0 comments on commit 163a187

Please sign in to comment.