Skip to content
/ pyGAM Public
forked from dswah/pyGAM

[HELP REQUESTED] Generalized Additive Models in Python

License

Notifications You must be signed in to change notification settings

OKOIHUE/pyGAM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

build Documentation Status PyPI version codecov python38 python39 python310 DOI

pyGAM

Generalized Additive Models in Python.

Documentation

Installation

pip install pygam

scikit-sparse

To speed up optimization on large models with constraints, it helps to have scikit-sparse installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from scikit-sparse references nose, so you'll need that too.

The easiest way is to use Conda:
conda install -c conda-forge scikit-sparse nose

scikit-sparse docs

Contributing - HELP REQUESTED

Contributions are most welcome!

You can help pyGAM in many ways including:

  • Working on a known bug.
  • Trying it out and reporting bugs or what was difficult.
  • Helping improve the documentation.
  • Writing new distributions, and link functions.
  • If you need some ideas, please take a look at the issues.

To start:

  • fork the project and cut a new branch
  • Now install the testing dependencies
conda install cython
pip install --upgrade pip
pip install poetry
poetry install --with dev

Make some changes and write a test...

  • Test your contribution (eg from the .../pyGAM): py.test -s
  • When you are happy with your changes, make a pull request into the master branch of the main project.

About

Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:

alt tag

where X.T = [X_1, X_2, ..., X_p] are independent variables, y is the dependent variable, and g() is the link function that relates our predictor variables to the expected value of the dependent variable.

The feature functions f_i() are built using penalized B splines, which allow us to automatically model non-linear relationships without having to manually try out many different transformations on each variable.

GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each X_i on Y individually while holding all other predictors constant.

The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.

Citing pyGAM

Please consider citing pyGAM if it has helped you in your research or work:

Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. DOI: 10.5281/zenodo.1208723

BibTex:

@misc{daniel\_serven\_2018_1208723,
  author       = {Daniel Servén and
                  Charlie Brummitt},
  title        = {pyGAM: Generalized Additive Models in Python},
  month        = mar,
  year         = 2018,
  doi          = {10.5281/zenodo.1208723},
  url          = {https://doi.org/10.5281/zenodo.1208723}
}

References

  1. Simon N. Wood, 2006
    Generalized Additive Models: an introduction with R

  2. Hastie, Tibshirani, Friedman
    The Elements of Statistical Learning
    http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

  3. James, Witten, Hastie and Tibshirani
    An Introduction to Statistical Learning
    http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf

  4. Paul Eilers & Brian Marx, 1996 Flexible Smoothing with B-splines and Penalties http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf

  5. Kim Larsen, 2015
    GAM: The Predictive Modeling Silver Bullet
    http://multithreaded.stitchfix.com/assets/files/gam.pdf

  6. Deva Ramanan, 2008
    UCI Machine Learning: Notes on IRLS
    http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf

  7. Paul Eilers & Brian Marx, 2015
    International Biometric Society: A Crash Course on P-splines
    http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf

  8. Keiding, Niels, 1991
    Age-specific incidence and prevalence: a statistical perspective

About

[HELP REQUESTED] Generalized Additive Models in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%