Skip to content

Commit

Permalink
Merge pull request #636 from Raghucharan16/chicken-disease-classifica…
Browse files Browse the repository at this point in the history
…tion

Added complete project of chicken disease classification
  • Loading branch information
Niketkumardheeryan authored May 21, 2024
2 parents 1eac21e + a4cb623 commit e64550a
Show file tree
Hide file tree
Showing 43 changed files with 3,583 additions and 0 deletions.
9 changes: 9 additions & 0 deletions Chicken_Disease_Classification/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
FROM python:3.8-slim-buster

RUN apt update -y && apt install awscli -y
WORKDIR /app

COPY . /app
RUN pip install -r requirements.txt

CMD ["python3", "app.py"]
21 changes: 21 additions & 0 deletions Chicken_Disease_Classification/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2023 BAPPY AHMED

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
203 changes: 203 additions & 0 deletions Chicken_Disease_Classification/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
# Chicken-Disease-Classification-Project


## Workflows

1. Update config.yaml
2. Update secrets.yaml [Optional]
3. Update params.yaml
4. Update the entity
5. Update the configuration manager in src config
6. Update the components
7. Update the pipeline
8. Update the main.py
9. Update the dvc.yaml
While Building the project, we have to follow these workflows, make sure we are updating everthing at every step.

# How to run?
### STEPS:

Clone the repository

```bash
https://github.com/entbappy/Chicken-Disease-Classification--Project
```
### STEP 01- Create a conda environment after opening the repository

```bash
conda create -n cnncls python=3.8 -y
```

```bash
conda activate cnncls
```


### STEP 02- install the requirements
```bash
pip install -r requirements.txt
```


```bash
# Finally run the following command
python app.py
```

Now,
```bash
open up you local host and port
```


### DVC cmd

1. dvc init
2. dvc repro
3. dvc dag


## MLflow

[Documentation](https://mlflow.org/docs/latest/index.html)


##### cmd
- mlflow ui

### dagshub
[dagshub](https://dagshub.com/)

MLFLOW_TRACKING_URI=https://dagshub.com/entbappy/MLflow-DVC-Chicken-Disease-Classification.mlflow
MLFLOW_TRACKING_USERNAME=entbappy
MLFLOW_TRACKING_PASSWORD=6824692c47a369aa6f9eac5b10041d5c8edbcef0
python script.py

Run this to export as env variables:

```bash

export MLFLOW_TRACKING_URI=https://dagshub.com/entbappy/MLflow-DVC-Chicken-Disease-Classification.mlflow

export MLFLOW_TRACKING_USERNAME=entbappy

export MLFLOW_TRACKING_PASSWORD=6824692c47a369aa6f9eac5b10041d5c8edbcef0

```


# AWS-CICD-Deployment-with-Github-Actions

## 1. Login to AWS console.

## 2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess


## 3. Create ECR repo to store/save docker image
- Save the URI: 566373416292.dkr.ecr.us-east-1.amazonaws.com/chicken


## 4. Create EC2 machine (Ubuntu)

## 5. Open EC2 and Install docker in EC2 Machine:


#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

# 6. Configure EC2 as self-hosted runner:
setting>actions>runner>new self hosted runner> choose os> then run command one by one


# 7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = demo>> 566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = simple-app




# AZURE-CICD-Deployment-with-Github-Actions

## Save pass:

s3cEZKH5yytiVnJ3h+eI3qhhzf9q1vNwEi6+q+WGdd+ACRCZ7JD6


## Run from terminal:

docker build -t chickenapp.azurecr.io/chicken:latest .

docker login chickenapp.azurecr.io

docker push chickenapp.azurecr.io/chicken:latest


## Deployment Steps:

1. Build the Docker image of the Source Code
2. Push the Docker image to Container Registry
3. Launch the Web App Server in Azure
4. Pull the Docker image from the container registry to Web App server and run



## About MLflow & DVC

MLflow

- Its Production Grade
- Trace all of your expriements
- Logging & taging your model


DVC

- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)
49 changes: 49 additions & 0 deletions Chicken_Disease_Classification/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
from flask import Flask, request, jsonify, render_template
import os
from flask_cors import CORS, cross_origin
from cnnClassifier.utils.common import decodeImage
from cnnClassifier.pipeline.predict import PredictionPipeline


os.putenv('LANG', 'en_US.UTF-8')
os.putenv('LC_ALL', 'en_US.UTF-8')

app = Flask(__name__)
CORS(app)


class ClientApp:
def __init__(self):
self.filename = "inputImage.jpg"
self.classifier = PredictionPipeline(self.filename)


@app.route("/", methods=['GET'])
@cross_origin()
def home():
return render_template('index.html')


@app.route("/train", methods=['GET','POST'])
@cross_origin()
def trainRoute():
os.system("python main.py")
return "Training done successfully!"



@app.route("/predict", methods=['POST'])
@cross_origin()
def predictRoute():
image = request.json['image']
decodeImage(image, clApp.filename)
result = clApp.classifier.predict()
return jsonify(result)


if __name__ == "__main__":
clApp = ClientApp()
# app.run(host='0.0.0.0', port=8080) #local host
# app.run(host='0.0.0.0', port=8080) #for AWS
app.run(host='0.0.0.0', port=80) #for AZURE

30 changes: 30 additions & 0 deletions Chicken_Disease_Classification/config/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
artifacts_root: artifacts


data_ingestion:
root_dir: artifacts/data_ingestion
source_URL: https://github.com/entbappy/Branching-tutorial/raw/master/Chicken-fecal-images.zip
local_data_file: artifacts/data_ingestion/data.zip
unzip_dir: artifacts/data_ingestion



prepare_base_model:
root_dir: artifacts/prepare_base_model
base_model_path: artifacts/prepare_base_model/base_model.h5
updated_base_model_path: artifacts/prepare_base_model/base_model_updated.h5




prepare_callbacks:
root_dir: artifacts/prepare_callbacks
tensorboard_root_log_dir: artifacts/prepare_callbacks/tensorboard_log_dir
checkpoint_model_filepath: artifacts/prepare_callbacks/checkpoint_dir/model.h5




training:
root_dir: artifacts/training
trained_model_path: artifacts/training/model.h5
Loading

0 comments on commit e64550a

Please sign in to comment.